강원도 중왕산 지역 낙엽활엽수림과 낙엽송 조림지에서 수관통과우와 수간류 및 낙엽낙지에 의한 양분 유입의 차이

Differences of Nutrient Input by Throughfall, Stemflow and Litterfall between Deciduous Forest and Larix kaempferi Plantation in Mt. Joonwang, Kangwon-do

  • 정문호 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이돈구 (서울대학교 농업생명과학대학 산림과학부) ;
  • 엄태원 (상지대학교 생명자원과학대학 산림과학과)
  • Jung, Mun-Ho (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Don-Koo (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Um, Tae-Won (Department of Forest Sciences, College of Life Science & Natural Resources, Sangji University)
  • 투고 : 2006.11.07
  • 심사 : 2007.01.05
  • 발행 : 2007.04.30

초록

본 연구는 낙엽활엽수림과 낙엽송 조림지에서 양분 유입의 차이를 알아보고자 강원도 평창군에 위치한 중왕산 지역에서 임내강우와 임외강우, 낙엽낙지에 의한 양분 유입량과 토양수 내 양분 농도를 조사하였다. 조사 기간동안 연평균 강우 차단율은 낙엽활엽수림에서 12%, 낙엽송 조림지에서 36%로 낙엽송 조림지에서 높았다. 수관통과우 내 양이온 농도는 차이를 보이지 않았으나, 음이온 농도는 낙엽송 조림지에서 더 높았으며, 수간류에서는 $Cl^-$ 이온이 낙엽송 조림지에서 높았으며, 다른 이온은 차이를 보이지 않았다. 수관통과우와 수간류에 의한 양분 유입량은 $Cl^-$ 이온을 제외한 다른 이온들의 유입량이 낙엽송 조림지보다 낙엽활엽수림에서 더 많았다. 토양수 내 이온 농도는 A층에서는 $Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$ 이온이, B층에서는 $Ca^{2+}$, $Cl^-$ 이온이 낙엽송 조림지에서 다소 높았다. 연간 낙엽낙지량은 낙엽활엽수림에서 $2,589kg\;ha^{-1}$로, 낙엽송 조림지의 $1,046kg\;ha^{-1}$보다 많은 유입량을 보였다. 낙엽낙지내 이온 함유량은 N의 경우 낙엽송 조림지와 낙엽활엽수림에서 각각 1.6%와 1.1%로 낙엽송 조림지에서 더 높았으나, 양이온 함량은 낙엽활엽수림에서 더 높았다. 낙엽낙지에 의한 양분 유입량은 N의 경우, 낙엽활엽수림에서 $36.81kg\;ha^{-1}yr^{-1}$, 낙엽송 조림지에서 $16.16kg\;ha^{-1}yr^{-1}$였으며, 양이온의 유입량 역시 낙엽활엽수림에서 많았다. 이를 종합해 볼 때, 본 연구에서 수관통과우와 수간류 및 낙엽낙지에 의한 양분유입량은 낙엽활엽수림에서 더 많은 것으로 나타났다.

The objectives of this study were to compare nutrient input by throughfall, stemflow and litterfall and concentration of nutrient in soil water between deciduous forest stand and Larix kaempferi plantation at Mt. Joongwang, Pyongchang-gun, Gangwon-do. The amount of rainfall interception during study period in deciduous forest stand and L. kaempferi plantation was 12% and 36%, respectively. Concentrations of cation ($Na^+$, $Mg^{2+}$, $K^+$ and $Ca^{2+}$) in throughfall were not different, while concentration of $Cl^-$ in stemflow was higher in L. kaempferi plantation. The results indicated that annual nutrient inputs by rainfall with the exception of $Cl^-$ were significantly greater in deciduous forest stand. In soil water, concentrations of anion ($Cl^-$, $NO_3{^-}$ and $SO{_4}^{2-}$) in A-layer, and $Ca^{2+}$ and $Cl^-$ in B-layer were higher in L. kaempferi plantation. Litterfall input during study period was $2,589kg\;ha^{-1}$ in deciduous forest stand and $1,046kg\;ha^{-1}$ in L. kaempferi plantation. Concentration of N was higher in L. kaempferi plantation, while N input from litterfall was greater in the deciduous forest stand ($36.81kg\;ha^{-1}yr^{-1}$) than L. kaempferi plantation ($16.16kg\;ha^{-1}yr^{-1}$). $Na^+$, $Mg^{2+}$, $K^+$ and $Ca^{2+}$ in litterfall collected from deciduous forest stand were found to be higher than those from the L. kaempferi plantation. Also, input of those were greater in deciduous forest stand. Thus, total nutrient input by throughfall, stemflow and litterfall was greater in deciduous forest stand than L. kaempferi plantation, significantly.

키워드

참고문헌

  1. Albrektson, A. 1988. Needle litterfall in stands of Pinus sylvestris in Sweden, in relation to site quality, standage and latitude. Scand J Forest Res. 3:333-342 https://doi.org/10.1080/02827588809382521
  2. Cappelato, R., E.P. Norman, and L.R. Harvey. 1993. Acidic atmospheric deposition and canopy interactions of adjacent decidious and coniferous forests in the Georgia Piedment. Can. J. For. Res. 23:1114-1124 https://doi.org/10.1139/x93-142
  3. Chang, K.S. 2001. Pattern of nutrient fluxes in deciduous forest ecosystem impacted by acidic deposition. Kor. J. Env. Eco. 15:240-236
  4. Harding, R.J., C. Neal, and P.G. Whitehead. 1992. Hydrological effects of plantation forestry in North-Western Europe. P. 445-455 In Teller, A. et al.(ed.) Responses of forest ecosystems to environmental changes. Elsvier Applied Science of New York
  5. Houle, D., R. Quiment, R. Paquin, and J.G. Laflamme. 1999. Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can. J. For. Res. 29:1944-1957 https://doi.org/10.1139/cjfr-29-12-1944
  6. Gower, S.T., and Y. Son. 1992. Differences in soil and oeaf litterfall nitrogen dynamics for five forest plantations. Soil Sci. Soc. Am. J. 56:1959-1966 https://doi.org/10.2136/sssaj1992.03615995005600060051x
  7. Joo, K.Y. 1999. Nutrient input from rainfall into soils and its flow in the stands of Pinus koraiensis, Larix leptolepis and Quercus species located at Kwangju-Gun, Kyonggi-Do. Ph.D. Thesis, Seoul National University, Seoul, Korea
  8. Kavvadias, V.A., D. Alifragis, A. Tsiontsis, G. Brofas, and G. Stamatelos. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecol Manag. 144:113-127 https://doi.org/10.1016/S0378-1127(00)00365-0
  9. Korea Forest Service. 1999. Statistical yearbook of forestry. 29th ed. Seoul, Korea
  10. Korea Forest Service. 2006. Statistical yearbook of forestry. 36th ed. Seoul, Korea
  11. Kim, J.H. 2006. Soil Carbon Accumulation and Soil Respiration of a deciduous Stand, Larix kaernpferi and Pinus koraiensis Plantations in Mt. Jungwang, Pyungchang-gun, Gangwon-do. M.S. Thesis, Seoul National University, Seoul, Korea
  12. Kim, J.S., Y.H. Son, J.H. Lim, and Z.S. Kim. 1996. Aboveground Biomass, N and P distribution, and litterfall in Pinus rigida and Larix leptolepsis plantations. Jour. Korean For. Soc. 85:416-425
  13. Kim, C.S. K.S. Koo, Y.K. Kim, W.K. Lee, J.H. Jeong, and H.S. Seo. 1997. Dynamics of litterfall and nutrient inputs in Quercus acutissima and Pinus koraiensis stands. Fri. J. For. Sci. 55:13-18
  14. Kim, K.H. 1993. A Simulation model for estimating rainfall interception loss in a forest stand. Ph.D. Thesis, Seoul National University, Seoul, Korea
  15. Kwak, Y.S., and J.H. Kim. 1992. Nutrient cycling in mongolian oak(Quercus mongolica) forest. Korean J. Ecology 15:35-46
  16. Lee, D.K. 1996. Ecosystem Management Strategies for the Sustainable Production of Forest Resources. 96 International Sysmposium on Forest Science. Kangwon National University. pp 59-82
  17. Lee, D.K, G.T Kim, K.Y. Joo, and Y.S. Kim. 1997. Throughfall, stremflow and rainfall interception loss in Pinus koraiensis sieb. et zucc., Larix leptolepis(Sieb, et Zucc) gordon and quercus species stand at Kwangju-gun, Kyunggi-Do. Jour. Korean For. Soc. 86:200-207
  18. Matzner, E., and K.J. Meiwes. 1994. Long-term development of element fluxes bulk precipitation and througfhall in two German forest. J Environ Quaq. 26:162-166
  19. McColl, J.G. 1972. Dynamics of ion transport during moisture flow from a Douglas-fir forest floor. Soil Sci. Soc. Am. Proc. 36:668-674
  20. Otto, H.J. 1992. Waldokologie. Ulmer, Stuttgart 391pp
  21. Park, J.H., and B.M. Woo. 1997. Analysis of influential factores from rainfall to stream water quality in small forested watershed. Jour. Korean For. Soc. 86:789-501
  22. Park, Y.D., D.K. Lee, and D.Y. Kim. 1999. Nutrient dynamics in the throughfall, stemflow and soil solution in Korean pine, Japanese larch and hardwood stands at Kwanju-gun, Kyonggi-do. Jour. Korean. For. Soc. 88:541-554
  23. Pedersen, L.B., and J.B. Hansen. 1999. A comparison of litterfall and element fluxes in even aged Norway spruce, Sitka spruce and beech stand in Denmark. Forest Ecol Manag. 114:55-70 https://doi.org/10.1016/S0378-1127(98)00381-8
  24. Remezov N.P. 1959. Method of studying the biological cycle of elements in forest. Pochvovedenie 1959:71-79
  25. Robertson, S.M.C., M. Hornung, and V.H. Kennedy. 2000. Water chemical of throughfall and soil water under four tree species at Gisburn, Northwest England, before and after felling. Forest Ecol Manag. 129:102-117
  26. Shibata, H., and H. Sakuma. 1996. Canopy modification of precipitation chemistry in deciduous and coniferous forest affected by acidic deposition. Soil Sci Plant Nutr. 42:1-10 https://doi.org/10.1080/00380768.1996.10414683
  27. Thurow, T.L., W.H. Blackburn., S.D. Warren, and C.A. Taylor Ur. 1987. Rainfall interception by midgrass, shortgrass, and live oak mottes. J Range Manage. 40:455-460 https://doi.org/10.2307/3899611
  28. Toba, T., and T. Ohta. 2005. An observational study of the factors that influence interception loss in boreal and temperate forests. J. Hydrol. 313:208-220 https://doi.org/10.1016/j.jhydrol.2005.03.003
  29. Toman, M.A., and P.M.S. Ashton. 1996. Sustainable forest ecosystem and management : A Review Article. Forest Sci. 42:336-377
  30. Yoo, J.H., M.J. Yi, Y.K. Kim, Ch.H. Lee, J.K. Byun, S.W. Lee, and Ch.S. Kim. 2002. Throughfall and stemflow chemistry of coniferous and deciduous stands in Seoul, Ulsan and Hongcheon regions. Jour. Korean For. Soc. 91:102-110
  31. Woo, B.M. 1993. Influences of Forest Environment on the Water Yield from Small Forested Watersheds. Jour. Korean For. Soc. 82:283-291