Characteristics of Soil Water Runoff and Canopy Cover Subfactor in Sloped Land with Different Soil Texture

경사지 밭토양에서 강우량과 토성에 따른 물 유출 양상 및 수관피복인자 구명

  • Lee, Hyun-Haeng (National Institute of Agricultural Science & Technology) ;
  • Ha, Sang-Keon (National Institute of Agricultural Science & Technology) ;
  • Hur, Seung-Oh (National Institute of Agricultural Science & Technology) ;
  • Jung, Kang-Ho (National Institute of Agricultural Science & Technology) ;
  • Park, Chan-Won (National Institute of Agricultural Science & Technology) ;
  • Kim, Kye-Hoon (Dept. of Environmental Horticulture, The University of Seoul)
  • 이현행 (농촌진흥청 농업과학기술원) ;
  • 하상건 (농촌진흥청 농업과학기술원) ;
  • 허승오 (농촌진흥청 농업과학기술원) ;
  • 정강호 (농촌진흥청 농업과학기술원) ;
  • 박찬원 (농촌진흥청 농업과학기술원) ;
  • 김계훈 (서울시립대학교)
  • Received : 2006.10.31
  • Accepted : 2007.02.10
  • Published : 2007.04.30

Abstract

This study was performed as an effort to reduce soil loss by investigating the phase of water flow according to soil texture and rainfall pattern and by determining the canopy cover subfactor in the RUSLE (revised universal soil loss equation). Red pepper was planted at the 15% sloped lysimeter of $2m{\times}5m{\times}0.5m$ ($width{\times}length{\times}depth$) with three different textured soils (loam, clay loam and sandy loam) and the relationship between amount and intensity of rainfall; soil loss and the amount of runoff; and amount of rainfall and runoff at different soil texture were measured at the experiment station of the National Institute of Agricultural Science and Technology (NIAST) during May to October of 2005. The amount of runoff increased with increasing amount of rainfall, showing difference in the relative increase rate of runoff at different soil texture. The increase rate of runoff with unit increase of rainfall for the lysimeter with red pepper was 0.44, 0.41 and 0.13 for loam, clayey loam and sandy loam, respectively. The minimum amount of rainfall for runoff was 23.53 mm for sandy loam, 10.35 mm for loam and 5.46 mm for clayey loam, respectively. The canopy cover subfactors of red pepper were 0.425, 0.459, and 0.478 for sandy loam, loam and clayey loam, respectively.

우리나라 밭토양은 70% 이상이 경사지에 위치하고 있기 때문에 침식에 의한 토양유실이 매우 심각한 실정이다. 따라서 본 연구에서는 토성 간 강우량 및 강우강도에 따른 토양유실량과 유출수량을 비교함으로써 토성 및 강우형태에 따른 물흐름 양상을 파악하고, RUSLE (Revised universal soil loss equation)에서 수관피복인자(Canopy cover subfactor)를 산출하여 토양유실을 방지하는데 이용하고자 하였다. 시험은 2005년 5월부터 10월까지 고추, 배추, 감자, 콩이 식재되고 15%의 경사도를 가진 라이시미터에서 실시되었고 강 우량과 강우강도, 토양 유실량과 유출수량, 강우량과 토성에 따라 유출량과의 관계를 보았다. 강우량에 따른 유출수량은 모두 강우량이 증가함에 따라 증가하는 정의 관계를 보였으나 토성에 따라 강우량이 증가함에 따른 유출수의 상대적인 증가비율은 다소 다른 경향을 나타내었다. 고추가 식재된 상태에서 토성별 강우량 단위 증가에 따른 유출수의 증가비율은 양토에서 0.44로 가장 높았고 식양토, 사양토는 0.41 mm, 0.13 mm 이었다. 유출발생 최소강우량도 사양토가 23.53 mm로 가장 높았으며 양토는 10.35 mm, 식양토는 5.46 mm 순으로 나타내었다. 고추의 수관피복인자는 사양토에서 0.425, 양토는 0.459, 식양토는 0.478를 나타내었다. 본 연구 결과 산출된 토성별 강우량에 따른 유출수량과 수관피복인자는 토양 유실량을 평가하여 저감 대책을 마련하는데 도움이 되리라 판단된다.

Keywords

References

  1. Angima, S. D, D. E. Stott, M. K. O'Neill, C. K. Ong, and G. A. Weesies. 2003. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems and Environment 97:295-308 https://doi.org/10.1016/S0167-8809(03)00011-2
  2. Chang, N. K., and S. M. Yun. 1994. The soil and mineral nutrient erosion on the floors of vegetations. Kor. Turfgrass Sci. 8(3):149-165
  3. Hur, S. O., K. H. Jung, S. K. Ha, H. K. Kwark, and J. G. Kim. 2005. Mathematical description of soil loss by runoff at inclined upland of maize cultivation. J. Korean Soc. Soil Sci. Fert. 38(2):66-71
  4. Jung, P. K., M. H. Ko, and K. T. Um. 1985. Discussion of cropping management factor for estimation soil loss. J. Korean Soc. Soil Sci. Fert. 18:7-13
  5. Jung, P. K., M. H. Koh, and K. T. Um. 1989. Evaluation of soil erosion management practices on sloped farm land. Sci. Fert. 32:31-37
  6. Lee, N. J., S. J. Oh, and P. K. Jung. 1998. Soil loss and water runoff in a watershed in Yeoju. J. Korean Soc. Soil Sci. Fert. 31:211-215
  7. Mkhabela, M. S., and N. N. Mashinini, 2005. Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAA's-AVHRR. Agricultural and Forest Meteorology 129:1-9 https://doi.org/10.1016/j.agrformet.2004.12.006
  8. Myers, J. L., and M. G. Wagger. 1996. Runoff and sediment loss from three tillage systems under simulated rainfall. Soil & Tillage Research 39:115-159 https://doi.org/10.1016/S0167-1987(96)01041-0
  9. Oh, S. J., P. K. Jung, Y. H. Kim, M. H. Um, and K. T. Um. 1989. Effect of soil erosion control with different pasture establishments on slope land. Res. Rept. RDA. 31(1):24-28
  10. Oh, S. J., P. K. Jung, and K. T. Um. 1992. Soil erosion control with vinyl mulch of different crops. Res. Rept. RDA. 34(2):30-35
  11. Park, C. S., Y. S. Jung, J. H. Joo, and G. J. Lee. 2005. Measurement technique for soil loss estimation using laser distance meter in sloped upland. J. Korean Soc. Soil Sci. Fert. 38(3):127-133
  12. Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCOOL, and D. C. Yoder, 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation(RUSLE). Agric. Handbook No. 703. U.S. Dept. Agric., Washington D.C., USA
  13. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1973. Monitoring vegetation systems in the great plains with ETRA. Third ETRS Symposium, NASA SP-353, U.S. Govt. Printing Office, Washington D.C., 1:309-317
  14. Smolikowski, B., H. Puig, and E. Roose. 2001. Influence of soil protection techniques on runoff, erosion and plant production on semi-arid hillsides of cabo verde. Agriculture, Ecosystems and Environment. 87:67-80 https://doi.org/10.1016/S0167-8809(00)00292-9
  15. Seo, J. H., J. Y. Park, and D. Y. Song. 2005. Effect of cover crop hairy vetch on prevention of soil erosion and reduction of nitrogen fertilization in sloped upland. J. Korean Soc. Soil Sci. Fert. 38(3):134-141
  16. Shin, Y. H., J. H. Park, and M. S. Park. 2003. Spectral reflectance characteristics and vegetation indices of field crops. KCID J. 10(2):43-54
  17. Yun, B. K., P. K. Jung, S. J. Oh, S. K. Kim, and I. S. Ryu. 1996. Effect of compost application on soil loss and physico-chemical properties in lysimeter. J. Korean Soc. Soil Sci. Fert. 29(4):336-341
  18. Wainwright, J., A. J. Parsons, and A. D. Abrahams. 2000. Plot scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrol. Process 14:2921-2943 https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7
  19. Wischmeier, W. H., and D. D. Smith. 1965. Predicting rainfall erosion losses from cropland east of rocky mountains: Guide for selection of practices for soil and water conservation. Agric. Handbook No. 282. US Dept. Agric., Washington D.C., USA
  20. Wischmeier, W. H., and D. D. Smith. 1978. Predicting rainfall erosion losses: A guide to conservation planning. Agric. Handbook No. 537. US Dept. Agric., Washington D.C., USA