DOI QR코드

DOI QR Code

Corrosive Degradation of MgO/Al2O3-Added Si3N4 Ceramics under a Hydrothermal Condition

MgO/Al2O3가 소결조제로 첨가된 Si3N4 세라믹스의 수열 조건에서의 부식열화 거동

  • Kim, Weon-Ju (Nuclear Materials Research Center, Korea Atomic Energy Research Institute) ;
  • Kang, Seok-Min (Nuclear Materials Research Center, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Nuclear Materials Research Center, Korea Atomic Energy Research Institute)
  • 김원주 (한국원자력연구원 원자력재료연구센터) ;
  • 강석민 (한국원자력연구원 원자력재료연구센터) ;
  • 박지연 (한국원자력연구원 원자력재료연구센터)
  • Published : 2007.07.27

Abstract

Silicon nitride ($Si_3N_4$) ceramics have been considered for various components of nuclear power plants such as the mechanical seal of a reactor coolant pump (RCP), the guide roller for a control rod drive mechanism (CRDM), and a seal support, etc. Corrosion behavior of $Si_3N_4$ ceramics in a high-temperature and high-pressure water must be elucidated before they can be considered as components for nuclear power plants. In this study, the corrosion behaviors of $Si_3N_4$ ceramics containing MgO and $Al_2O_3$ as sintering aids were investigated at a hydrothermal condition ($300^{\circ}C$, 9.0 MPa) in pure water and 35 ppm LiOH solution. The corrosion reactions were controlled by a diffusion of the reactive species and/or products through the corroded layer. The grain-boundary phase was preferentially corroded in pure water whereas the $Si_3N_4$ grain seemed to be corroded at a similar rate to the grain-boundary phase in LiOH solution. Flexural strengths of the $Si_3N_4$ ceramics were significantly degraded due to the corrosion reaction. Results of this study imply that a variation of the sintering aids and/or a control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of $Si_3N_4$ ceramics in a high-temperature water.

Keywords

References

  1. K. Oda and T. Yoshio, J. Am. Ceram. Soc., 80, 3233 (1977)
  2. H. Hirayama, T. Kawakubo, A. Goto and T. Kaneko, J. Am. Ceram. Soc., 72, 2049 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06029.x
  3. A Technology Roadmap for Generation IV Nuclear Energy Systems, Generation IV International Forum, GIF-002-00, 2002
  4. L. Giancarii, H. Golfier, S. Nishio, R. Raffray, C. Wong and R. Yamada, Fus. Eng. Des., 61-62, 307 (2002) https://doi.org/10.1016/S0920-3796(02)00213-2
  5. W. - J. Kim, S. M. Kang, K. H. Park, A. Kohyama, w.S. Ryu and J. Y. Park, J. Kor. Ceram. Soc., 42, 575 (2005) https://doi.org/10.4191/KCERS.2005.42.8.575
  6. J. H. Park, W. - J. Kim, J. N. Park, K. H. Park, J. Y. Park and Y. W. Lee, Kor. J. Mater. Res., 17, 160 (2007) https://doi.org/10.3740/MRSK.2007.17.3.160
  7. N. S. Jacobson, J. Am. Ceram. Soc., 76, 3 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03684.x
  8. D. S. Fox, E. J. Opila and R. E. Hann, J. Am. Ceram. Soc., 83, 1761 (2000)
  9. E. J. Opila, J. Am. Ceram. Soc., 82, 625 (1999)
  10. T. Sato, T. Murakami, T. Endo, M. Shimada, K. Komeya, T. Kameda and M. Komatsu, J. Mater. Sci., 26, 1749 (1991) https://doi.org/10.1007/BF00543597
  11. S. Somiya, Mater. Chern. Phys., 67, 157 (2001) https://doi.org/10.1016/S0254-0584(00)00434-X
  12. K. Oda, T. Yoshio, Y. Miyamoto and M. Koizumi, J. Am. Ceram. Soc., 76, 1365 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03768.x
  13. N. Kishan Reddy, V. N. Mulay and M. A. Jaleel, J. Mater. Sci. Lett., 13, 1516 (1994) https://doi.org/10.1007/BF00419152
  14. W. - J. Kim, H. S. Hwang, J. Y. Park and W.- S. Ryu, J. Mater. Sci. Lett., 22, 581 (2003) https://doi.org/10.1023/A:1023390111074
  15. H. Y. Sohn and M. E. Wadsworth, Rate Processes of Extractive Metallurgy, p.8, Plenum Press, New York (1979)
  16. V. A. Hackley, U. Paik, B. - H. Kim and S. G. Malghan, J. Am. Ceram. Soc., 80, 1781 (1997)

Cited by

  1. Morphology control of a silicon nitride thick film derived from polysilazane precursor using UV curing and IR heat treatment vol.116, pp.7, 2017, https://doi.org/10.1080/17436753.2017.1339490