Identification and Characterization of Paenibacillus polymyxa DY1 Isolated from Korean Soil with New Antibacterial Activity

새로운 항균활성을 보이는 토양 분리 세균 Paenibacillus polymyxa DY1의 분류와 동정

  • Shin, Eun-Seok (Department of Biology, Andong University) ;
  • Lee, Hee-Moo (Department of Biology, Andong University) ;
  • Lee, Bok-Kwon (Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korean NIH) ;
  • Kim, Sung-Hoon (Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korean NIH) ;
  • Kwon, Sun-Il (Department of Clinical Pathology, Daegu Health College) ;
  • Yoo, Kwan-Hee (Department of biology, Sangji University)
  • 신은석 (안동대학교 생명과학과) ;
  • 이희무 (안동대학교 생명과학과) ;
  • 이복권 (질병관리본부 국립보건연구원 장내세균팀) ;
  • 김성훈 (질병관리본부 국립보건연구원 장내세균팀) ;
  • 권순일 (대구보건대학 임상병리과) ;
  • 유관희 (상지대학교 생명과학과)
  • Published : 2007.03.31

Abstract

The DY1 strain of Gram-positive, rod-shaped bacteria was isolated from the soil sample collected from Daeam mountain, Korea. The culture filtrate of DY1 strain showed a broad spectrum of antimicrobial activity on various pathogenic and food poisoning enteric bacterial species tested in vitro. It showed significant growth-inhibitory effect on Salmonella enterica sp., Shigella sp., pathogenic Escherichia coli, Vibrio cholerae, Vibrio parahemolyticus, and Yersinia enterocolitica. For the identification of the DY1 strain, morphological, biochemical and molecular phylogenetic approaches were performed. The DY1 strain was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analyses. The 16S rDNA of DY1 showed the highest pairwise identity with Paenibacillus polymyxa with 99.79% (1,413 bp/1,416 bp). The antimicrobial entity from DY1 looked different from preciously reported ones and seems to have a great potential to be further studied as a candidate of new antibiotics to control multi-drug resistant pathogens.

항생제 내성 세균의 출현으로 새로운 항생물질의 개발에 대한 필요성이 대두되고 있다. 본 연구에서는 새로운 항균활성물질을 개발하고자 강원도 대암산 용늪 토양으로부터 새로운 항균물질을 생산하는 균을 분리하였고, 이를 동정하였다. 생화학적인 시험과 16S ribosomal DNA 염기서열 분석결과 Paenibacillus polymyxa균과 가장 높은 상동성을 보여주었다. 지방산 조성의 분석에서도 이 균주는 Paenibacillus polymyxa와 가장 가까웠다. 이 균주가 생산하는 항균물질은 1군 법정 전염병을 일으키는 Samonella enterica serovar Typhi와 Shigella dysentery, enterohaemorrhagic Eschelichia coli, 그리고 Vibrio cholera등의 병원성 세균에 성장억제 효과를 나타냈으며, 다른 일반 식중독 장내세균에서도 성장억제 효과를 나타냈다. 이 균주가 생산하는 항균활성 물질은 과거에 보고된 것과 다른 새로운 것으로 보이며, 광범위한 항균활성으로 인하여 새로운 항생물질 개발 후보로 많은 잠재력을 가진 것으로 평가된다.

Keywords

References

  1. 권희안. 1996. 내성균주를 겨냥한 최신 항생제 개발 동향. 대한약사회지 7, 97-102
  2. 김병섭, 임태헌, 박은우, 조광연. 1995. Benzimidazole계 및 N-phenylcarbamate계 살균제에 다중 저항성인 잿빛곰팡이균의 발생. 한국식물병리학회지 11, 146-150
  3. 김성규, 김준명, 김호훈, 배직현, 정윤섭, 조동택. 2003. 항균제 내성소식 11, 1-2
  4. 박윤경, 함경수. 2005. 항균펩타이드의 구조와 활성에관한 상관관계. 미생물과 산업 31, 4-14
  5. Aguilera, M., M. Monteoliva-Sanchez, A. Suarez, V. Guerra, C. Lizama, A. Bennaser, and A. R. Corrnenzana. 2001. Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill waste water. Int. J. Syst. Evol. Microbiol. 51, 1687-1692 https://doi.org/10.1099/00207713-51-5-1687
  6. Ash, C., F.G. Priest, and M.D. Collins. 1993. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253-260 https://doi.org/10.1007/BF00873085
  7. Bush, K., G.A. Jacoby, and A.A. Mederios. 1995. A functional classification scheme for $\beta$-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211-1233 https://doi.org/10.1128/AAC.39.6.1211
  8. Cheong, H.J. 1997. Vancomycin resistant Enterococci. J. Korean Soc. Chemother. 15, 27-43
  9. David, R.B. and R. N. Castenhol. 1973. Bergey's manual systematic bacteriolgy. p. 721. Springer, press 2nd ed. New York, USA
  10. Duffy, B.K. and G. Defago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol srains. Appl. Environ. Microbiol. 65, 2429-2438
  11. Elo, S., I. Suominen, P. Kampfer, J. Juhanoja, M. Salkinoja-Salsonen, and K. Haahtela. 2001. Paenibacillus borealis sp. nov., a nitrogen fixing species isolated from spruce forest humus in Finland. Int. J. Syst. Evol. Microbiol. 51, 535-545 https://doi.org/10.1099/00207713-51-2-535
  12. Fleming, A. 2001. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull. World Health Organ. 79, 780-90
  13. Gordon, R.E., W.C. Haynes, and C.H. Pany. 1973. The Genus Bacillus. Agriculture Handbook No. 427. Agriculture Research Service, U. S. Department of Agriculture, Washington D.C., USA
  14. Hiramatsu K., N. Aritaka, H. Hanaki, S. Kawasaki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. Kobayashi. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus au reus heterogeneously resistant to vancomycin. Lancet 350, 1670-1673 https://doi.org/10.1016/S0140-6736(97)07324-8
  15. Hutchinson, C.R. and I. Fujji. 1995. Polyketide synthase gene manipulation; A structure function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49, 201-238 https://doi.org/10.1146/annurev.mi.49.100195.001221
  16. Jacoby, G.A. 1991. More extended spectrum $\beta$-Iactamases. Antimicrob. Agents Chemother. 35, 1697-1704 https://doi.org/10.1128/AAC.35.9.1697
  17. Kabara, J.J. 1985. Medium chain fatty acids and esters, p. 109. Antimicrobial in Foods. Marcel Dekker Inc., New York, USA
  18. Kajimura, Y. and M. Kaneda. 1997. Fusaricidins B, C and D new depsipeptide antibiotics produced by Bacillus polymyxa KT-8 isolation, structure elucidation and biological activity. Japan J. Antibiotics 50, 220-228 https://doi.org/10.7164/antibiotics.50.220
  19. Kimer, S., P.E. Hammer, D.S. Hil, A. Altmann, I. Fischer. L.J. Weislo, M. Lanahan, K.H. van Pee, and J.M. Ligon. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180, 1939-1943
  20. Koo, B.S., J.C. Ryu, T.Y. Chung, and K.C. Kim. 1998. Purification and characterization of natural antifungal protein from astragal seeds (Astragalus membranaceus). Kor. J. Appl. Microbiol. Biotechnol. 26, 379-386
  21. Kunin, C.M. 1993. Resistance to antiMicrobiol drugs-a worldwide calamity. Ann. Intern. Med. 118, 557-561 https://doi.org/10.7326/0003-4819-118-7-199304010-00011
  22. Kurusu, K., K. Ohba, T. Arai, and K. Fukushima. 1987. New peptide antibiotics LI-F03, F04, F05, F07 and F08, produced by B. polymyxa. I. Isolation and chatacterization. J. Antibiot. 40, 1506-1514 https://doi.org/10.7164/antibiotics.40.1506
  23. Leclereq, R., E. Derlot, J. Duval, and P. Courbalin. 1998. Plasmid mediated resistance to vancomyhcin and teicoplanin, N. Engl. J. Med. 319, 157-161 https://doi.org/10.1056/NEJM198807213190307
  24. Lee, S.H. and Y. S. Lim. 1997. AntiMicrobiol effects of Shizandra chinensis extract against Listeria monocytogenes. Kor. J. Appl. Microbiol. 25, 442-447 https://doi.org/10.1111/j.1472-765X.1997.tb00014.x
  25. Lepper, M.H., H.F. Dowling, G.G. Jackson, B. Moulton, and H.W. Spies. 1953. Effect of antibiotic usage in the hospital on the incidence of antibiotic-resistant strains among personnal earring Staphylococci. J. Lab. Clin. Med. 42, 832-839
  26. Lim, T.H., J.M. Lee, T.H. Chang, and B.J. Cha. 2000. Antifungal activity and identification of an Actinomycetes strain isolated from mummified peaches. Kor. J. Appl. Microbiol. Biotechnol. 28, 161-166
  27. Logan, N.A. and R.C. Berkeley. 1984. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130, 1871-82
  28. Lunter, G., I. Miklos, A. Drummond, J.L. Jensen, and J. Hein. 2005. Bayesian estimation of phylogeny and sequence alignment. BMC Bioinformatics 1, 83
  29. Mark, A.D. 1985. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Oregon State University, Corvailis, OR 97331
  30. Okami, Y. and K. Hotta. 1998. Search and discovery of new antibiotics. p. 33-67. In M. Goodfellow (ed.). Actinomycetes in biotechnology. Academic Press. London, UK
  31. Omura, S. and R. Oiwa. 1984. Studies on bioactive compounds from microorganisms. Kitasato Arch. Exp. Med. 57, 75-204
  32. Park, Y.J., E.J. Oh, M.K. Kang, B.K. Kim, S.M. Kim, and S.I. Sin. 1997. Emergence of teicoplanin resistant Staphylococci. J. Korean Soc. Chemother. 15, 89-95
  33. Paulus, H. and E. Gray. 1964. The biosynthesis of polymyxin B by growing cultures of B. polymyxa. J. Biol. Chem. 239, 865-871
  34. Pichard, B., J.P. Larue, and D. Thouvenot. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by B. polymyxa. FEMS Microbiol. Lett. 133, 215-218 https://doi.org/10.1111/j.1574-6968.1995.tb07887.x
  35. Piuri, M., C. Sanchez-Rivas, and S.M. Ruzai. 1998. A novel antiMicrobiol activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett. Appl. Microbiol. 27, 9-13 https://doi.org/10.1046/j.1472-765X.1998.00374.x
  36. Quirk, M. 2002. First VRSA isolate identified in USA. Lancet Infect. Dis. 2, 510
  37. Seol, SY., Y.S. Kim, Y.S. Jeong, J.Y. Oh, H.Y. Kang, and D.C. Moon. 2006. Molecular characterization of antiMicrobiol resistance in Shigella sonnei isolates in Korea. J. Med. Microbiol. 55, 871-877 https://doi.org/10.1099/jmm.0.46441-0
  38. Somaatmadia, D., J.J. Powers, and M.K. Hamdy. 1964. Anthocyanins. VI. Chelation studies on anthocyanins and other related compound. J. Food Sci. 29, 644 https://doi.org/10.1111/j.1365-2621.1964.tb00425.x
  39. Waxman, D.J. and J.L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of $\beta$-Iactam antibiotics. Annu. Rev. Biochem. 52, 815-829
  40. Yoon, J.H., H.M. Oh, B.D. Yoon, K.H. Kang, and Y.H. Park. 2003. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int. J. Syst. Evol. Microbiol. 53, 295-301 https://doi.org/10.1099/ijs.0.02108-0