DOI QR코드

DOI QR Code

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea

한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자

  • Lim, Dhong-Il (South Sea Research Institute, Korea Ocean Research and Development Institute) ;
  • Shin, In-Hyun (Department of Earth Sciences, Chosun University) ;
  • Jung, Hoi-Soo (Korea-China Ocean Research Center)
  • 임동일 (한국해양연구원 남해연구소 남해특성연구본부) ;
  • 신인현 (조선대학교 사범대학 지구과학교육학과) ;
  • 정회수 (한국해양연구원 한중해양과학공동연구소)
  • Published : 2007.06.30

Abstract

The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

황해와 북동중국해에는 중국의 황하와 양쯔강 그리고 한국의 강들로부터 많은 양의 부유물질이 공급되어 대륙붕 해역에 여러 개의 니질 퇴적체가 발달하고 있으나, 이들 퇴적체에서 두 기원을 설명할 수 있는 퇴적-지화학적 요인은 아직까지 명확하게 제시되고 있지 않다. 본 논문에서는 한국과 중국 기원 강 퇴적물의 주성분 원소의 함량 특성을 비교 연구하고, 그 결과를 토대로 황해와 북동중국해 퇴적물에 적용 가능한 기원지 추적자를 제시하였다. 본 연구를 위해 총 102개의 강과 연안 퇴적물에 대한 주성분 원소(Al, Fe, Mg, K, Ca, Na, Ti)들의 함량을 유도결합플라즈마 분석기를 이용하여 분석하였으며, 이와 함께 입도효과를 최소화하기위해 원시료를 실트$(60{\sim}20{\mu}m)$와 점토 구간$(<20{\mu}m)$으로 분리하여 주성분 원소 함량과 스트론튬 동위원소 비($^{87}Sr/^{86}Sr$)를 분석하였다. 연구결과, 새로운 방법의 입도보정을 통한 Fe/Al과 Mg/Al 함량 비는 매우 유용한 잠재적 추적자로 제시되며, 이러한 결과는 입자 분리된 실트와 점토 퇴적물에서 더욱 뚜렷하다. 또한 실트 구간의 퇴적물에서 한국 기원의 $^{87}Sr/^{86}Sr$ 비는 $0.7229{\sim}0.7253$(평균 0.7243) 범위로 중국 기원 퇴적물($0.7169{\sim}0.7189$, 평균 0.7179)과 뚜렷한 차이를 보여, 황해와 북동중국해에서 한국과 중국 기원의 퇴적물을 구분할 수 있는 중요한 지화학적 성분으로 평가된다. 이러한 잠재적 추적자들에 근거할 때, 한국 서남해에 발달하고 있는 니질 퇴적대의 전퇴적물은 한국과 중국의 혼합 기원으로 해석되나, 실트와 점토 구간의 퇴적물로 나누어 볼 때 그기원이 각각 다르게 나타났다. 즉, 점토 퇴적물은 한국과 중국의 혼합 기원으로, 실트 퇴적물은 한국 기원이 우세한 것으로 해석된다.

Keywords

References

  1. 정희수, 임동일, 유해수, 2006, 북동중국해 코아 퇴적물의 희토류원소 분포 양상과 기원. 자원환경지질, 39, 39-51
  2. 윤정수, 임동일, 변종철, 정희수, 2005, $^{87}Sr/^{86}Sr$ 비를 이용한 동중국해 대륙붕 퇴적물의 기원 연구. 한국해양학회지[바다], 10, 92-99
  3. Alexander, CX, DeMaster, D.J., and Nittrouer, C.A., 1991, Sediment accumulation in a modern epicontinental-shelf setting in the Yellow Sea. Marine Geology, 98, 51-72 https://doi.org/10.1016/0025-3227(91)90035-3
  4. Asahara, Y, Tanaka, X, Kamioka, H., and Nishimura, A., 1995, Asian continental nature of $^{87}Sr/^{86}Sr$ ratios in north central Pacific sediments. Earth Planetary Science Letter, 133, 105-116 https://doi.org/10.1016/0012-821X(95)00048-H
  5. Capo, R.C., Stewart, B.W., and Chadwick, O.A, 1998, Strontium isotpes as tracers of ecosystem processes: theory and methods. Geoderma, 82, 197-225 https://doi.org/10.1016/S0016-7061(97)00102-X
  6. Cho, Y.G, Lee, C.B., and Choi, M.S., 1999, Geochemistry of surface sediments off the southern and western coast of Korea. Marine Geology, 159, 111-129 https://doi.org/10.1016/S0025-3227(98)00194-7
  7. Dasch, E.J., 1969, Sr isotope in weathering profiles, deep-sea sediments and sedimentary rocks. Geochimica et Cosmwhimica Acia, 33, 1521-1552 https://doi.org/10.1016/0016-7037(69)90153-7
  8. DeMaster, D.J., Mckee, B.A., Nittrouer, C.A, Qian, J.G, and Cheng, GD., 1985, Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 4, 143-158 https://doi.org/10.1016/0278-4343(85)90026-3
  9. Douglas, GB., Gray, CM., Hart, B.T., and Beckett, R., 1995, A strontium isotopic investigation of the origin of suspended particulate matter (SPM) in the Murray-Darling River system, Australia. Geochimica et Cosmo-chimica Acta, 59, 3799-3815 https://doi.org/10.1016/0016-7037(95)00266-3
  10. Hu, D.X., 1984, Upwelling and sedimentation dynamics I. The role of upwelling in sedimentation in the Huanghe Sea and East China Sea-a description of general features. Chinese Journal of Oceanological Limnology, 2, 12-19 https://doi.org/10.1007/BF02888388
  11. Lee, C.B., Jung, H.S., and Jeong, K.S., 1992, Distribution of some metallic elements in surface sediments of the southeastern Yellow Sea. The Journal of the Oceanological Society of Korea, 27, 55-65
  12. Lee, H.J. and Chough, S.K., 1989, Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology, 87, 195-205 https://doi.org/10.1016/0025-3227(89)90061-3
  13. Lee, H.J. and Chu, Y.S., 2001, Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan Mud Belt. Journal of Sedimentary Research, 71, 144-154 https://doi.org/10.1306/040700710144
  14. Lim, D.I., Jung, H.S., Choi, J.Y, Yang, S., and Ann, K.S., 2006, Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Continental Shelf Research, 26, 15-24 https://doi.org/10.1016/j.csr.2005.10.001
  15. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C., and Ahn, K.S., 2007, Recent sediment accumulation and origin of shelf mud deposits in the Yellow Sea and East China Seas. Progress in Oceanography, 73, 145-159 https://doi.org/10.1016/j.pocean.2007.02.004
  16. Milliman, J.D. and Meade, R.H., 1983, World-wide delivery of river sediment to the oceans. The Journal of Geology, 91, 1-21 https://doi.org/10.1086/628741
  17. Milliman, J.D., Beardsley, R.C., Yang, Z.S., and Lime-burner, R., 1985, Modem Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms. Continental Shelf Research, 4, 175-188 https://doi.org/10.1016/0278-4343(85)90028-7
  18. Nittrouer, C.A., DeMaster, D.J., and McKee, B.A., 1984, Fine-scale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea. Marine Geology, 61, 13-24 https://doi.org/10.1016/0025-3227(84)90105-1
  19. Park, S.C., Lee, H.H., Han, H.S., Lee, GH., Kim, D.C., and Yoo, D.G, 2000, Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology, 170, 271-288 https://doi.org/10.1016/S0025-3227(00)00099-2
  20. Park, YA. and Khim, B.K., 1990, Clay minerals of the recent fine-grained sediments on the Korean continental shelves. Continental Shelf Research, 10, 1179-1191 https://doi.org/10.1016/0278-4343(90)90015-E
  21. Park, YA. and Khim, B.K., 1992, Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology 104, 205-213 https://doi.org/10.1016/0025-3227(92)90095-Y
  22. Schubel, J.R., Shen, H.T., and Park, M.J., 1984, A comparison of some characteristic sedimentation processes of estuaries entering the Yellow Sea. In: Park, Y.A., Pilkey, O.H., Kim, S.W. (Eds.), Marine geology and physical processes of the Yellow Sea. 286-308
  23. Shi, C, Zhang, D.D., and You, L., 2003, Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology, 199, 13-25 https://doi.org/10.1016/S0025-3227(03)00159-2
  24. Summerhayes, C.P., 1972, Geochemistry of continental margin sediments from northwest Africa. Chemical Geology, 10, 137-156 https://doi.org/10.1016/0009-2541(72)90014-9
  25. Yang, S.Y, Jung, H.S, Lim, D.I., and Li, C.X., 2003, A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Review, 1289, 1-28
  26. Zhao, Y.Y, Park, Y.A, Qin, Y.S, Choi, J.Y, Gao, S, Li, F.Y., Cheng, P, and Jiang, R.H, 2001, Material source for the Eastern Yellow Sea mud: evidence of mineralogy and geochemistry from China-Korea Joint Investigation. The Yellow Sea, 7, 22-26

Cited by

  1. Late Quaternary Stratigraphy and Depositional Environment of Tidal Sand Ridge Deposits in Gyeonggi Bay, West Coast of Korea vol.33, pp.1, 2012, https://doi.org/10.5467/JKESS.2012.33.1.1
  2. Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.289
  3. Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud pp.1598-7477, 2018, https://doi.org/10.1007/s12303-018-0019-y