DOI QR코드

DOI QR Code

Petrology of the Basalts in the Seongsan-Ilchulbong area, Jeju Island

제주도 성산일출봉 일대 현무암에 대한 암석학적 연구

  • Koh, Jeong-Seon (Institute of Science Education, Pusan National University) ;
  • Yun, Sung-Hyo (Department of Earth Science, Graduate School, Pusan National University) ;
  • Jeong, Eun-Ju (Department of Earth Science, Graduate School, Pusan National University)
  • 고정선 (부산대학교 과학교육연구소) ;
  • 윤성효 (부산대학교 지구과학과) ;
  • 정은주 (부산대학교 지구과학과)
  • Published : 2007.06.30

Abstract

This study reports petrography and geochemical characteristics of the basalt lava flows in Seongsan-Ilchulbong area, the easternpart of Jeju island, Korea, to understand the evolutionary processes of magma. Basalt lavas are classified into the Pyoseon-ri basalt and the Seongsan-ri basalt. The Pyoseon-ri basalt is dark-gray colored with many vescicles, and mainly consists of olivine, feldspar and rarely of clinopyroxene as phenocrysts. The Seongsan-ri basalt is largely aphanitic basalt and bright-gray colored, divided into two lava-flow units: lower lava flow (B1) and upper lava flow (B2) by the intercalated yellowish lapillistone and paleosol. The lavas plotted into sub-alkaline tholeiitic basalt and alkaline basalt series. The tholeiitic basalts have characteristically higher $SiO_2,\;FeO^T$, and CaO contents, but lower $TiO_2,\;K_2O,\;P_2O_5$ and other incompatible elements compared to the alkali basalts. The tholeiitic basalts have higher $SiO_2$ to the same MgO contents than the alkalic basalts. The contents of Ni, Cr, and MgO show a strong positive correlation, which indicates that low-MgO phases like plagioclase and titanomagnetite were important during the differentiation of magma. The contents of incompatible elements against that of Th show a strong positive correlation. The chondrite-nomalized REE patterns of tholeiitic and alkalic basalts are subparallel each other. LREEs contents of the former are lower than, but HREEs contents are similar to the latter. They both are similar to their K/Ba ratios. The primitive-mantle normalized spider diagram demonstrates that the contents of Ba and Th of all basaltic magma are enriched, and yet Cr, Ni are depleted. The tholeiitic and alkalic basalts may be originated from a different degree of the partial melting of the same mantle material source, and one shows a higher degree of the partial melting than the other.

제주도 동부 성산 일출봉 일대 현무암류에 대한 암석기재, 암석화학적 특징 및 마그마 성인에 대하여 연구하였다. 본 지역의 지질은 층서적으로 최하부에 표선리현무암이 놓이며, 그 위에 성산리현무암이 분포하는데, 이는 라필리스톤층 및 고토양층에 의해 하부용암류와 상부용암류로 구분된다. 본 지역에서 산출되는 용암류는 반정 광물의 종류 및 조직에 따라 크게 침상장석 감람석 현무암과 비현정질 현무암으로 구분할 수 있다. 본 지역의 화산암류는 TAS분류도에서 알칼리계열 현무암과 비알칼리계열 현무암으로 분류되며, 비알칼리 계열 현무암은 쏠리아이트암으로 분류된다. 쏠리아이트 현무암은 알칼리현무암에 비하여 $SiO_2,\;FeO^T$, CaO 함량이 높고, $TiO_2,\;K_2O,\;P_2O_5$ 함량과 다른 불호정성원소 함량의 낮은 값을 가지는 특징을 보인다. MgO 함량 변화에 따른 미량 원소 변화에서 호정성 미량 원소의 변화 경향은 대체로 정(+)의 상관 관계를 나타내고, Th을 마그마 분화 척도로 사용한 불호정성 미량 원소의 변화 경향도 정(+)의 상관 관계를 나타낸다. 암석화학적 고찰 결과는 본 지역의 암석이 동질기원 마그마 물질의 부분용융의 차이에 의해 생성되었음을 지시한다.

Keywords

References

  1. 고정선, 윤성효, 현경봉, 이문원, 길영우, 2005, 제주도 우도 단성화산의 현무암에 대한 암석학적 연구. 암석학회지, 14(1), 45-60
  2. 고정선, 윤성효, 김석연, 2007, 제주도 섭지코지 선돌 분석구의 화산작용과 현무암. 한국지구과학회지, 28(4), in press https://doi.org/10.5467/JKESS.2007.28.4.462
  3. 김봉균, 1969, 제주도 신양리 및 고산리 지구의 신양리층에대한 층서 및 고생물학적 연구. 지질학회지, 5(2), 103-121
  4. 김석연, 2001, 제주도 동부 섭지코지 일대 현무암의 암석학적 연구. 부산대학교 석사학위논문, 60 p
  5. 박기화, 이병주, 조등룔, 김정찬, 이승렬, 최현일, 황재하, 송교영, 최범영, 조병욱, 김유봉, 1998, 제주-애월도폭 지질조사. 제주도, 290 p
  6. 박준범, 1994, 제주도 화산암의 지화학적 진화. 연세대학교 박사학위논문, 305 p
  7. 박준범, 권성택, 1991, 제주도 화산암의 암석화학적 진화(II): 제주 동부 월라봉부근 시추코아 연구. 대한지질학회 제 46차 정기총회 및 학술발표회, 지질학회지, 27, 531 p
  8. 박준범, 권성택, 1996, 제주도의 솔리아이트 화산활동. 암석학회지, 5, 66-83
  9. 원종관, 1976, 제주도의 화산암류에 대한 암석화학적인 연구. 지질학회지, 12, 207-226
  10. 원종관, 길영우, 이문원, 1998a, 제주도 동북사면에 분포하는 화산암류의 암석학적 연구. 지질학회지, 19, 329-342
  11. 원종관, 이문원, 윤성효, 고보균, 1998b, 제주도 남동부 표선 지역 화산암류의 지구화학적 특징. 지질학회지, 34, 172-191
  12. 원종관, 이문원, 윤성효, 이동영, 고보균, 1995, 표선도폭(1:100,000) 지질설명서. 건설부, 제주도, 59 p
  13. 원종관, 이문원, 이동영, 박계헌, 1993, 성산도폭설명서. 제주도청, 59 p
  14. 윤상구, 한대석, 이동영, 1986, 제주도 남부 지역의 제4기 지질 조사 연구. 동력자원연구소 지질보고서, KR-86-2-(B)-2, 223-278
  15. 윤성효, 원종관, 이문원, 고정선, 이정숙, 1997, 제주도 동부지역의 쏠레이아이트 용암류에 대한 암석학적 연구. 한국암석학회 발표요약문, 14, 42p
  16. 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질, 31(5), 447-458
  17. 윤성효, 고정선, 박정미, 2002, 제주도 남동부 태흥리 용암에 대한 암석학적 연구. 암석학회지, 11(1), 17-29
  18. 이문원, 원종관, 이동영, 박계헌, 김문섭, 1994, 제주도 남사면 화산암류의 화산층서 및 암석학적 연구. 1992년도 과학재단 자유공모과제 보고서, 65 p
  19. 이동영, 윤상규, 김주용, 김윤종, 1987, 제주도 제 4기 지질조사연구, 한국동력자원연구소, 233-278
  20. 이정숙, 1998, 제주도 동부 지역의 쏠레이아이트 용암류에 대한 암석학적 연구. 부산대학교 석사학위논문, 82 p
  21. Armstrong, R.L. and Nixon, GT., 1981, Chemical and Sr isotopic composition of igneous rocks from DSDP LEGS 59 and 60, in; initial reports of the Deep Sea Drill Project 59, 719-727
  22. Frey, F.A., Green, D.H. and Roy, S.D., 1978, Integrated models of basalt pedogenesis a study of quartz tholei-ites to olivine melilites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19, 463-513 https://doi.org/10.1093/petrology/19.3.463
  23. Hanson, GN., 1989, An approach to trace element modeling using a simple igneous system as an example. In Lipin, B.R and McKay, GA. (eds.) Geochemistry and mineralogy of rare earth elements. Review of Mineralogy, 21, 79-97
  24. Hyndman, D.W., 1985, Prtrology of igneous and metamor-phic rocks. (2nd ed.) McGrow-Hill, 786 p
  25. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548 https://doi.org/10.1139/e71-055
  26. Kim, D.H., Hwang, J.H., and Hwang, S.K., 1986, Tuff rings and cones on Jeju Island, Korea Journal of Geological Society of Korea, 22, 1-9
  27. Kuno, H., 1966, Lateral variation of basalt magma across continental margins and island arcs. Bulletin of Volca-nology, 29, 195-222 https://doi.org/10.1007/BF02597153
  28. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanet-tin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750 https://doi.org/10.1093/petrology/27.3.745
  29. Lee, M.W., 1982, Petrology and geochemistry of Jeju volcanic Island, Korea. Science Report Tohoku University Series, 3, 15, 177-256
  30. MacDonald, GA. and Katsura, T. 1964, Chemical composition of Hawaiian Lavas. Journal of Petrology, 5, 82-133 https://doi.org/10.1093/petrology/5.1.82
  31. Macdonald, R., 1980, Trace Element Evidence for Mantle Heterogeneity Beneath the Scottish Midland Valley in the Carboniferous and Permian, Phil. Trans. R. Soc. Lond.,. Series A, Mathematical and Physical Sciences, 297 (1431), The Evidence for Chemical Heterogeneity in the Earth's Mantle (Jul. 24, 1980), 245-257
  32. Middlemost, E.A.K., 1975, The basalt clan. Earth Science Review, 11, 337-364 https://doi.org/10.1016/0012-8252(75)90039-2
  33. Miyashiro, A, 1978, Nature of alkalic volcanic rock series. Contribution to Mineralogy and Petrology, 66, 91-104 https://doi.org/10.1007/BF00376089
  34. Mullen, E.D., 1983, $MnO/TiO_2/P_2O_5$: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letter, 62, 53-62 https://doi.org/10.1016/0012-821X(83)90070-5
  35. Pearce, J.A. and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letter, 19, 290-300 https://doi.org/10.1016/0012-821X(73)90129-5
  36. Pearce, J.A., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, in Hawkeswoth, C.J. and Norry, M.J. (eds.) Continental Basalts and Mantle Xenoliths, Shiva Publishing Limited, 230-249
  37. Taylor, S.R., and McLennan, S.MM, 1985, The continental crust: its composition and evolution. Blackwell, Oxford, 312 p
  38. Treuil, M. and Joron, J.M., 1975, Utilisation des elements hygro-magmatophiles pour la simplification de la mod-elisation quantitative des processus magmatiques. Soci-eta' Italiana di mineralogia et petrologia, 31, 125
  39. Weaver, B.L., Wood, D.A., Tarney, J. and Joron, J.L., 1987, Geochemistry of ocean island basalts from the south Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha. In Fitton, J.G and Upton, B.GJ. (eds.), Alkaline igneous rocks, Geological Survey Special Publication, 30, 253-267 https://doi.org/10.1144/GSL.SP.1987.030.01.11
  40. Winchester, J.A. and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differ-ertiation products using immobile elements. Chemical Geology, 20, 325-343 https://doi.org/10.1016/0009-2541(77)90057-2
  41. Wilson, M., 1989, Igneous petrogenesis. Unwin Hyman, London. 466 p
  42. Wood, D.A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letter, 50, 11-30 https://doi.org/10.1016/0012-821X(80)90116-8
  43. Zhi, X., Song, Y, Frey, F.A., Reng, J., and Zhai, M., 1990, Geochemistry of Hannuoba basalts, eastern China; Con-traints on the origin of continental alkali and tholeiitic basalt. Chemical Geology, 88, 1-33 https://doi.org/10.1016/0009-2541(90)90101-C

Cited by

  1. Study on the Distributional Characteristics and Classification of Quaternary Monogenetic Volcanoes in Jeju Island, Korea vol.21, pp.4, 2012, https://doi.org/10.7854/JPSK.2012.21.4.385
  2. Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea vol.34, pp.2, 2013, https://doi.org/10.5467/JKESS.2013.34.2.109