Preparation and Characterization of Chitosan/Cellulose Acetate Blend Film

키토산/셀룰로오스 아세테이트 복합필름의 제조와 특성

  • Jung, Young-Jin (Dept. of Biomaterials Engineering, College of Natural Resource & Life Science, Pusan National University) ;
  • An, Byung-Jae (Dept. of Biomaterials Engineering, College of Natural Resource & Life Science, Pusan National University) ;
  • Choi, Hae-Wook (Dept. of Biomaterials Engineering, College of Natural Resource & Life Science, Pusan National University) ;
  • Kim, Hong-Sung (Dept. of Biomaterials Engineering, College of Natural Resource & Life Science, Pusan National University) ;
  • Lee, Young-Hee (Dept. of Organic Material System Engineering, Pusan National University)
  • 정영진 (부산대학교, 생명자원과학대학, 바이오소재) ;
  • 안병재 (부산대학교, 생명자원과학대학, 바이오소재) ;
  • 최해욱 (부산대학교, 생명자원과학대학, 바이오소재) ;
  • 김홍성 (부산대학교, 생명자원과학대학, 바이오소재) ;
  • 이영희 (부산대학교, 유기소재시스템공학)
  • Published : 2007.08.27

Abstract

Chitosan(CS) and cellulose acetate(CA) composite films were prepared using formic acid as a cosolvent by casting, solvent evaporating and neutralization method. This study examines if the blending method, which uses formic acid as a cosolvent is efficient in improving the mechanical properties of CS film, especially wet strength and elongation. Formic acid is an effective cosolvent for the blend of CS and CA. Under wet condition, tensile strength and elongation of the composite films were obviously higher than those of the films made from pure CS. FTIR, DSC, and X-ray diffraction showed that the composite films exhibit a high level of compatibility and that strong interaction between the CS and CA was caused by intermolecular hydrogen bonding. The affinity series of composite film to transition metal ions are Cu(II) > Cd(II) > Cr(III). The adsorption of Cu((II) ion was shown to be highly pH sensitive.

Keywords

References

  1. S. M. Hudson, C. Smith, 'Polysaccharide: chitin and chitosan: chemistry and technology of their use as structural materials', Springer, Berlin, pp.96-118, 1998
  2. N.Kubota, Y.Kikuchi, 'Macromolecular complexes of chitosan', Marcel Dekker, New York, pp. 595-628, 1998
  3. Joseph C. Salamone, 'Polymeric Materials Encyclopedia', CRC, pp.595-628, 1998
  4. S. Hirano, H. Tsuchitda, and N. Nagao, N-acetylation in chitosan and the rate of its enzymatic hydrolysis, Biomaterials, 10, 574-576 (1989) https://doi.org/10.1016/0142-9612(89)90066-5
  5. Kohn. P. Winzler, and R. J. Hoffmann, Metabolism of D-glucosamine and N-acetyl- D-glucosamine in the intact rat, J. Biol. Chem. 237, 304-308(1962)
  6. Nakajima. M, Atsumi. K, Kifune. K, and Kanamaru. H, chitin is an effective material for sutures, Jpn. J. Surg, 16, 418-424(1986) https://doi.org/10.1007/BF02470609
  7. M. Kawase, N. Michibayashi, Y. Nakashima, N. Kurikawa, K. Yagi, and T. Mizoguchi, Application of glutaraldehyde-crosslinked chitosan as scaffold for hepatocyte attachment, Biol. Pharm. Bull, 20, 708-710(1997) https://doi.org/10.1248/bpb.20.708
  8. Y. J. Park, Y. M. Lee, S. N. Park, S. Y. Sheen, C. P. Chung, and S. J. Lee, Platelet drived growth factor releasing chitosan sponge for periodontal bone regeneration, Biomatrials, 21, 153-159(2000) https://doi.org/10.1016/S0142-9612(99)00143-X
  9. T. Chandy, and C. P. Sharma, Chitosan as biomaterial, Biomater. Artif. Organs, 18, 1-24 (1990) https://doi.org/10.3109/10731199009117286
  10. M. A. Amiji, Synthesis of anionic poly (ethylene glycol) derivative for chitosan surface modification in bloodcontacting application, Carbohydr. poym, 32, 193-199(1997) https://doi.org/10.1016/S0144-8617(97)00006-4
  11. Prudden. J. F, Migel. P. Hanson, P. Friedrich. L, and Balass. L, The discovery of a potent pure chemical wound-healing accelerator, Am. J. Surg, 119, 560-564(1970) https://doi.org/10.1016/0002-9610(70)90175-3
  12. Mutsuhiro Maeda, Yukio Inoue, Kazuo Kaneko, Tsuyoshi Sugamor, and Hideaki Iwase, Chitin and its Derivatives, 'Biomaterials and Bioengineering Handbook', (ed) Donald L. Wise, Marcel Dekker, 39, pp.867-880, 2000
  13. Jonathan Z. Knaul, Samuel M. Hudson, and Katherine A. M. Creber, Improved mechanical properties of chitosan fibers, J. Appl. polym. Sci, 72, 1721-1732(1999) https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V
  14. Venkatesh Mutalik, Lata S. Manjeshwar, Ashwini Wali, Malla Sairam, K. V. S. N. Raju, and Tejraj M. Aminabhavi, Thermodynamics/ hydrodynamics of aqueous polymer solutions and dynamic mechanical characterization of solid films of chitosan, sodium alginate, guar gum, hydroxy ethyl cellulose and hydroxypropyl methylcellulose at different temperatures, Carbohydrate Polymers, 65, 9-21(2006) https://doi.org/10.1016/j.carbpol.2005.11.018
  15. Shin-Hee Lee, Soo-Min Park, and Yongkuk Kim, Effect of the concentration of sodium acetate(SA) on crosslinking of chitosan fiber by epichlorohydrin(ECH) in a wet spinning system, Carbohydrate Polymers, 3, 1-8(2007) https://doi.org/10.1016/0144-8617(83)90008-5
  16. Luby. P, and Kuniak. L, Crosslinking statistics. Relative reactivities of Amylose hydroxyl group, Macromolecular Chemistry and Physics, 180, 2213-2220(1979) https://doi.org/10.1002/macp.1979.021800916
  17. Wei. Y. C, Hudson. S. M, Mayer. J. M, and Kaplan. D. L. The crosslinking of chitosan fibers, J. Polym. Sci. Part A. Polym Chemistery, 30, 2187-2193(1992) https://doi.org/10.1002/pola.1992.080301013
  18. Hua Zheng, Yumin Du, Jiahui Yu, Ronghua Huang, and Lina Zhang, Perparation and characterization of Chitosan/Poly(vinyl alcohol) blend fibers, J. Appl. Polym. Sci, 80, 2558- 2565(2001) https://doi.org/10.1002/app.1365
  19. Makoto Hasegawa, Akira Isogai, Fumihiko Onabe, Makoto Usuda, and Rajai H. Atalla, Characterization of cellulose-chitosan blend films, J. Appl. Polym. Sci, 45, 1873-1879(1992) https://doi.org/10.1002/app.1992.070451101
  20. P. R. Austin, German patent 2, 707, 164(1977)
  21. M. Terbojevrch, C. Carraro, A. Cosani, and E. Marsano, Solution studies of chitin-lithium chloride-N-N-dimethyl acetamide system, Carbohydr. Res, 180, 73-86(1988) https://doi.org/10.1016/0008-6215(88)80065-X
  22. Nelson. M. L, and O'Connor. R. T, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type, partII: A new infrared ratio for estimation of crystallinity in cellulose I and II, J. Appl. Polym. Sci, 8, 1325-1341(1964) https://doi.org/10.1002/app.1964.070080323
  23. Young-Soo Wang, Won-Mi Koo, and Han-DO Kim, Preparation and propertiesof new regenerated cellulose fibers, Textile Res. J, 73, 998- 1004(2003) https://doi.org/10.1177/004051750307301110
  24. K. Kurita, T. Sannan, and Y. Iwakura, Makromol. Chem, 178, 3197(1977) https://doi.org/10.1002/macp.1977.021781203
  25. Barbara Krajewska, Diffusion of metal ion through gel chitosan membrane, Reactive & Functional Polymers, 47, 37-47(2001) https://doi.org/10.1016/S1381-5148(00)00068-7
  26. A. L. Debbaudt, M. L. Ferreira, and M. E. Gschaider, Theoretical and experimental study of $M^{+2}$ adsorption on biopolymers. Comparative kinetic pattern of Pb, Hg, and Cd, Carbohydrate Polymers, 56, 321-332(2004) https://doi.org/10.1016/j.carbpol.2004.02.009
  27. Nan Li, Renbi Bai, Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms, seperation and purification technology, 42, 237-247(2005) https://doi.org/10.1016/j.seppur.2004.08.002