DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Oxygen Free Copper Processed by ARB at Low Strain Rate

저변형률속도에서 ARB가공된 무산소동의 미세조직 및 기계적 성질

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Han, Seung-Zeon (Department of Materials Technology, Korea Institute of Materials Science) ;
  • Lim, Cha-Yong (Department of Materials Technology, Korea Institute of Materials Science)
  • 이성희 (목포대학교 신소재공학과) ;
  • 한승전 (한국기계연구원 부설 재료연구소) ;
  • 임차용 (한국기계연구원 부설 재료연구소)
  • Published : 2007.10.27

Abstract

The microstructure and mechanical properties of an oxygen free copper processed by accumulative roll bonding(ARB) at low strain rate were studied. The copper sheets were highly strained up to an equivalent strain of ${\sim}6.4$ by ARB process at ambient temperature. The strain rate of the copper during the ARB was $2.6sec^{-1}$. The microstructure and mechanical properties of the ARB-processed copper were compared to those of the specimens processed by ARB at relatively high strain rate ($37sec^{-1}$). The microstructure and mechanical properties of the copper with ARB process was very similar to each other despite of some differences in recovery.

Keywords

References

  1. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, Mater. Sci. Eng., A137, 35 (1991) https://doi.org/10.1016/0921-5093(91)90316-F
  2. R. Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapwlski and B. Baudelet, Scripta Metall. Mater., 27, 855 (1992) https://doi.org/10.1016/0956-716X(92)90405-4
  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998) https://doi.org/10.1016/S1359-6462(98)00302-9
  4. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 795 (1999) https://doi.org/10.1016/S1359-6462(99)00015-9
  5. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, Scripta Mater., 46, 281 (2002) https://doi.org/10.1016/S1359-6462(01)01239-8
  6. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325, 228 (2002) https://doi.org/10.1016/S0921-5093(01)01416-2
  7. S. H. Lee, Y. Saito, K. T. Park and D. H. Shin, Mater. Trans., 43, 2320 (2002) https://doi.org/10.2320/matertrans.43.2320
  8. S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito and T. Sakai, Mater. Trans., 44, 1376 (2003) https://doi.org/10.2320/matertrans.44.1376
  9. Y. Saito, H. Utsunomiya and H. Suzuki, Proc. Inst. Mech. Eng. Ser. B, 215, 947 (2001) https://doi.org/10.1243/0954405011518854
  10. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, Acta Mater., 49, 1497 (2001) https://doi.org/10.1016/S1359-6454(01)00069-6
  11. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, C. J. Kim and M. Goto, Scripta Mater., 52, 21 (2005) https://doi.org/10.1016/j.scriptamat.2004.09.005
  12. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15, 240 (2005) https://doi.org/10.3740/MRSK.2005.15.4.240
  13. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15, 555 (2005) https://doi.org/10.3740/MRSK.2005.15.9.555
  14. S. H. Lee, C. S. Kim, S. S. Kim, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 17, 361 (2007) https://doi.org/10.3740/MRSK.2007.17.7.361
  15. N. Tsuji, T. Toyota, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu and M. Kiritani, Mater. Sci. Eng., A350, 108 (2003) https://doi.org/10.1016/S0921-5093(02)00709-8