Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Published : 2007.10.31

Abstract

Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.

Keywords

References

  1. Han JH, Gennadios A. Edible films and coatings: A review. pp. 239-262. In: Innovations in Food Packaging. Han JH (ed). Elsevier Academic Press, San Diego, CA, USA (2005)
  2. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. Potential of biobased materials for food packaging. Trends Food Sci. Tech. 10: 52-68 (1999) https://doi.org/10.1016/S0924-2244(99)00019-9
  3. Guilbert S, Gontard N, Gorris LGM. Prolongation of the shelf life of perishable food products using biodegradable films and coatings. Lebensm.-Wiss. Technol. 29: 10-17 (1996) https://doi.org/10.1006/fstl.1996.0002
  4. Krochta JM, De Mulder-Johnston C. Edible and biodegradable polymer films: Challenges and opportunities. Food Technol.- Chicago 51: 61-74 (1997)
  5. Debeaufort F, Quezada-Gallo JA, Voilley A. Edible films and coatings: Tomorrow's packagings: A review. Crit. Rev. Food Sci. 38: 299-313 (1998) https://doi.org/10.1080/10408699891274219
  6. Wong DWS, Camirand WM, Pavlath AE. Development of edible coatings for minimally processed fruits and vegetables. pp. 65-88. In: Edible Coatings and Films to Improve Food Quality. Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds). Technomic Publishing Company, Inc., Lancaster, PA, USA (1994)
  7. Baldwin EA. Edible coatings for fresh fruits and vegetables: Past, present, and future. pp. 25-64. In: Edible Coatings and Films to Improve Food Quality. Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds). Technomic Publishing Company, Inc., Lancaster, PA, USA (1994)
  8. Han JH. Antimicrobial food packaging. Food Technol.-Chicago 54: 56-65 (2000)
  9. Avena-Bustillos RJ, Krochta JM. Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslinking, and lipid content. J. Food Sci. 58: 904-907 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09388.x
  10. Gontard N, Duchez C, Cuq JL, Guilbert S. Edible composite films of wheat gluten and lipids: Water vapor permeability and other physical properties. Int. J. Food Sci. Tech. 29: 39-50 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb02045.x
  11. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Lebensm.-Wiss. Technol. 37: 323-330 (2004) https://doi.org/10.1016/j.lwt.2003.09.008
  12. Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA. Solubility, tensile, and color properties of modified soy protein isolate films. J. Agr. Food Chem. 48: 4937-4931 (2000) https://doi.org/10.1021/jf0005418
  13. Rhim JW, Weller CL. Properties of formaldehyde adsorbed soy protein isolate films. Food Sci. Biotechnol. 9: 228-233 (2000)
  14. Micard V, Belamri R, Morel HM, Guilbert S. Properties of chemically and physically treated wheat gluten films. J. Agr. Food Chem. 48: 2948-2953 (2000) https://doi.org/10.1021/jf0001785
  15. Rhim JW, Wu Y, Weller CL, Schnef M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. J. Food Sci. 64: 149-152 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb09880.x
  16. Gennadios A, Rhim JW, Handa A, Weller CL, Hanna MA. Ultraviolet radiation affects physical and molecular properties of soy protein films. J. Food Sci. 63: 225-228 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15714.x
  17. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA. Soy protein isolate-dialdehyde starch films. Ind. Crop Prod. 8: 195-203 (1998) https://doi.org/10.1016/S0926-6690(98)00003-X
  18. Ghorpade VM, Li H, Gennadios A, Hanna MA. Chemically modified soy protein films. T. ASAE 38: 1805-1808 (1995) https://doi.org/10.13031/2013.28007
  19. Park HJ, Weller CL, Vergano PJ, Testin RF. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 59: 1361-1370 (1993)
  20. Gennadios A, Brandenburg AH, Weller CL, Testin RF. Effects of pH on properties of wheat gluten and soy protein isolate films. J. Agr. Food Chem. 41: 1935-1939 (1993)
  21. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28: 1539-1641 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  22. Vaia RA, Gianelis EP. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30: 7990- 7999 (1997) https://doi.org/10.1021/ma9514333
  23. Giannelis EP. Polymer layered silicate nanocomposites. Adv. Mater. 8: 29-35 (1996) https://doi.org/10.1002/adma.19960080104
  24. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP. Recent advances in biodegradable nanocomposites. J. Nanosci. Nanotechno. 5: 497-526 (2005) https://doi.org/10.1166/jnn.2005.111
  25. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties, and use of a new class of materials. Mater. Sci. Eng. 28: 1-63 (2000) https://doi.org/10.1016/S0927-796X(00)00012-7
  26. Yu YH, Lin CY, Yeh JM, Lin WH. Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials. Polymer 44: 3553-3560 (2003) https://doi.org/10.1016/S0032-3861(03)00062-4
  27. Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid St. M. 6: 205-212 (2002) https://doi.org/10.1016/S1359-0286(02)00049-9
  28. Hernandez RJ, Selke SEM, Culter JD. Additives and compounding. pp. 135-156. In: Plastics Packaging. Hanser Publishers, Munich, Germany (2000)
  29. Giannelis EP. Polymer-layered silicate nanocomposites: Synthesis, properties, and applications. Appl. Organmet. Chem. 12: 675-680 (1998) https://doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<675::AID-AOC779>3.0.CO;2-V
  30. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O. Nylon-6-clay hybrid. Mat. Res. Soc. Symp. P. 171: 45-50 (1990)
  31. Sinha Ray S, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 50: 962-1079 (2005) https://doi.org/10.1016/j.pmatsci.2005.05.002
  32. Sinha Ray S, Biswas M. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 155: 167-221 (2001) https://doi.org/10.1007/3-540-44473-4_3
  33. Carrado KA. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Appl. Clay Sci. 17: 1- 23 (2000) https://doi.org/10.1016/S0169-1317(00)00005-3
  34. Fischer S, Vlieger J, Batenburg L, Fischer H, Kock T. 'Green' nanocomposite materials - New possibilities for bioplastics. Materialen 16: 3-7, 12 (2000)
  35. Giannelis EP, Krishinamoorti R, Manias E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138: 107-147 (1999) https://doi.org/10.1007/3-540-69711-X_3
  36. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 15: 11-29 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  37. Ogawa M, Kuroda K. Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull. Chem. Soc. Jpn. 70: 2593-2618 (1997) https://doi.org/10.1246/bcsj.70.2593
  38. Lagaly G. Introduction: From clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl. Clay Sci. 15: 1-9 (1999) https://doi.org/10.1016/S0169-1317(99)00009-5
  39. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S. Green nanocompositefrom renewable resources: Plant oil-clay hybrid materials. Chem. Mater. 15: 2492-2494 (2003) https://doi.org/10.1021/cm0340227
  40. Kumar S, Jog JP, Natarajan U. Preparation and characterization of poly(methylmethacrylate)-clay nanocomposites via melt intercalation: The effect of organoclay on the structure and thermal properties. J. Appl. Polym. Sci. 89: 1186-1194 (2003) https://doi.org/10.1002/app.12050
  41. Su SP, Wilkie CA. Exfoliated poly(methylmethacrylate) and polystyrene nanocomposites occur when the clay cations containing vinyl monomer. J. Polym. Sci. A141: 1124-1135 (2003)
  42. Shen Z, Simon GP, Cheng YB. Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites. Polymer 43: 4251-4260 (2002) https://doi.org/10.1016/S0032-3861(02)00230-6
  43. Artzi N, Nir Y, Narkis M, Siegmann A. Melt blending of ethylene vinyl alcohol copolymer/clay nanocomposites: Effect of the clay type and processing conditions. J. Polym. Sci. Pol. Phys. 40: 1741- 1753 (2002) https://doi.org/10.1002/polb.10236
  44. Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym. Test. 22: 453-461 (2003) https://doi.org/10.1016/S0142-9418(02)00126-5
  45. Suh DJ, Lim YT, Park OO. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polymer 41: 8557-8563 (2000) https://doi.org/10.1016/S0032-3861(00)00216-0
  46. Choi HJ, Kim SG, Hyun YH, Jhon MS. Preparation and rheological characteristics of solvent-cast poly(ethylene oxide)/montmorillonite nanocomoposites. Macromol. Rapid Comm. 22: 320-325 (2001) https://doi.org/10.1002/1521-3927(20010301)22:5<320::AID-MARC320>3.0.CO;2-3
  47. Ogata N, Kawakage S, Ogihara T. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blend prepared using water as solvent. J. Appl. Polym. Sci. 66: 573-581 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  48. Aranda P, Ruiz-Hitzky E. Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater. 4: 1395-1403 (1992) https://doi.org/10.1021/cm00024a048
  49. Strawhecker KE, Manias E. Structure and properties of poly(vinyl alcohol)/$Na^+$ montmorillonite nanocomposites. Chem. Mater. 12: 2943-2949 (2000) https://doi.org/10.1021/cm000506g
  50. Greenland DJ. Adsorption of poly(vinyl alcohols) by montmorillonite. J. Coll. Sci. 18: 647-664 (1963) https://doi.org/10.1016/0095-8522(63)90058-8
  51. Jimenez G, Ogata N, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly($^{\varepsilon}C$-caprolactone)-clay blend. J. Appl. Polym. Sci. 64: 2211-2220 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2211::AID-APP17>3.0.CO;2-6
  52. Ogata N, Jimenez G, Kawai H, Ogihara T. Structure and thermal/ mechanical properties of poly(l-lactide)-clay blend. J. Polym. Sci. Pol. Phys. 35: 389-396 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
  53. Jeon HG, Jung HT, Lee SW, Hudson SD. Morphology of polymer silicate nanocomposites: High density polyethylene and a nitrile. Polym. Bull. 41: 107-113 (1998) https://doi.org/10.1007/s002890050339
  54. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8: 1179-1184 (1993) https://doi.org/10.1557/JMR.1993.1179
  55. Li XC, Ha CS. Nanostructure of EVA/organoclay nanocomposites: Effects of kinds of organoclay and grafting of maleic anhydride onto EVA. J. Appl. Polym. Sci. 87: 1901-1909 (2003) https://doi.org/10.1002/app.11922
  56. Huang M, Yu J. Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J. Appl. Polym. Sci. 99: 170-176 (2006) https://doi.org/10.1002/app.22046
  57. Yano K, Usuki A, Okad A. Synthesis and properties of polyimideclay hybrid films. J. Polym. Sci. A135: 2289-2294 (1997) https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9
  58. Yano K, Usuki A, Okad A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. A1 31: 2493- 2498 (1993) https://doi.org/10.1002/pola.1993.080311009
  59. Cussler EL, Highes SE, Ward WJ, Aris R. Barrier membranes. J. Membrane Sci. 38: 161-174 (1998) https://doi.org/10.1016/S0376-7388(00)80877-7
  60. Polymer Nanocomposite Technology Brief. pp. 1-2. available from: http:// ip.research.sc.edu/PDF/Polymer%20Nanocomposite%20Technology %20Brief%20v1.pdf. Accessed Dec. 27, 2006
  61. Zeng QH, Yu AB, Lu GQM, Paul DR. Clay-based polymer nanocomposites: Research and commercial development. J. Nanosci. Nanotechno. 5: 1574-1592 (2005) https://doi.org/10.1166/jnn.2005.411
  62. Sinha Ray S, Yamad K, Okamoto M, Ueda K. Biodegradable polylactide/montmorillonite nanocomposites. J. Nanosci. Nanotechno. 3: 503-510 (2003) https://doi.org/10.1166/jnn.2003.220
  63. Sinha Ray S, Yamada K, Okamoto M, Ueda K. Polylactide-layered silicate nanocomposite: A novel biodegradable material. Nano Lett. 2: 1093-1096 (2002) https://doi.org/10.1021/nl0202152
  64. Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactidelayered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability, and melt rheology. Polymer 44: 857-866 (2003) https://doi.org/10.1016/S0032-3861(02)00818-2
  65. Lee SR, Park HM, Lim H, Kang T, Li X, Cho WJ, Ha CS. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43: 2495-2500 (2002) https://doi.org/10.1016/S0032-3861(02)00012-5
  66. Rhim JW, Hong SI, Park HM, Ng PKW. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agr. Food Chem. 54: 5814-5822 (2006) https://doi.org/10.1021/jf060658h
  67. Park JH, Jana SC. Mechanism and exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36: 2758-2768 (2003) https://doi.org/10.1021/ma021509c
  68. Chen C, Curliss D. Processing and morphological development of montmorillonite epoxy nanocomposites. Nanotechnology 14: 643- 648 (2003) https://doi.org/10.1088/0957-4484/14/6/315
  69. Messersmith PB, Gianellis EP. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 6: 1719-1725 (1994) https://doi.org/10.1021/cm00046a026
  70. Okamoto M, Morita S, Kim YH, Kotaka T, Tateyama H. Dispersed structure change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization with polar comonomers. Polymer 42: 1201-1206 (2001) https://doi.org/10.1016/S0032-3861(00)00419-5
  71. Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 41: 3887-3890 (2000) https://doi.org/10.1016/S0032-3861(99)00655-2
  72. Lu H, Hu Y, Yang L, Wang Z, Chen Z, Fan W. Preparation and thermal characteristics of silane-grafted polyethylene/montmorillonite nanocomposites. J. Mater. Sci. 40: 43-46 (2005) https://doi.org/10.1007/s10853-005-5685-2
  73. Alexandre M, Dubois P, Sun T, Graces JM, Jerome R. Polyethylenelayered silicate nanocomposites prepared by the polymerizationfilling technique: Synthesis and mechanical properties. Polymer 43: 2123-2132 (2002) https://doi.org/10.1016/S0032-3861(02)00036-8
  74. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 42: 9819-9826 (2001) https://doi.org/10.1016/S0032-3861(01)00509-2
  75. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35: 2042- 2049 (2002) https://doi.org/10.1021/ma010852z
  76. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30: 6333-6338 (1997) https://doi.org/10.1021/ma961786h
  77. Cho JW, Paul DR. Nylon 6 nanocomposites by melt compounding. Polymer 42: 1083-1094 (2001) https://doi.org/10.1016/S0032-3861(00)00380-3
  78. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8: 1185-1189 (1993) https://doi.org/10.1557/JMR.1993.1185
  79. Cheng D, Xia H, Chen HSO. Synthesis and characterization of surface-functionalized conducting polyaniline-chitosan nanocomposite. J. Nanosci. Nanotechno. 5: 466-473 (2005) https://doi.org/10.1166/jnn.2005.058
  80. Yeh JM, Chen YC, Ma CY, Lee KR, Wei Y, Li SI. Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials. Polymer 43: 2729-2736 (2002) https://doi.org/10.1016/S0032-3861(02)00005-8
  81. Sinha Ray S, Okamoto M. Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Comm. 24: 815-840 (2003) https://doi.org/10.1002/marc.200300008
  82. Maiti P, Kazunobu K, Okamoto M, Ueda K, Okamoto K. New polylactide/layered silicate nanocomposites: Role of organoclays. Chem Mater. 14: 4654-4661 (2002) https://doi.org/10.1021/cm020391b
  83. Messersmith PB, Gianelis EP. Synthesis and barrier properties of poly($\varepsilon$-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. A1 33: 1047-1057 (1995) https://doi.org/10.1002/pola.1995.080330707
  84. Messersmith PB, Gianelis EP. Polymer-layered silicate nanocomposites: In situ intercalative polymerrization of $^{\varepsilon}C$-caprolactone in layered silicates. Chem. Mater. 5: 1064-1066 (1993) https://doi.org/10.1021/cm00032a005
  85. McGlashan SA, Halley PJ. Preparation and characterization of biodegrdable starch-based nanocomposite materials. Polym. Int. 52: 1767-1773 (2003) https://doi.org/10.1002/pi.1287
  86. Tomka I. Thermoplastic starch. Adv. Exp. Med. Biol. 302: 627-637 (1991)
  87. De Carvalho AJF, Curvelo AAS, Agnelli JAM. A first insight on composites of thermoplastic starch and kaolin. Carbohyd. Polym. 45: 189-194 (2001) https://doi.org/10.1016/S0144-8617(00)00315-5
  88. Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287: 553-558 (2002) https://doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
  89. Park HM, Lee WK, Park CY, Cho WJ, Ha CS. Environmentally friendly polymer hybrids. Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci. 38: 909-915 (2003) https://doi.org/10.1023/A:1022308705231
  90. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F. Starch films reinforced with mineral clay. Carbohyd. Polym. 52: 101-110 (2003) https://doi.org/10.1016/S0144-8617(02)00239-4
  91. Xu Y, Zhou J, Hanna MA. Melt-intercalation starch acetate nanocomposite forms as affected by type of organoclay. Cereal Chem. 82: 105-110 (2005) https://doi.org/10.1094/CC-82-0105
  92. Kester JJ, Fennema OR. Edible films and coatings: A review. Food Technol.-Chicago 40: 47-59 (1986)
  93. Park HM, Misra M, Drzal LT, Mohanty AK. 'Green' nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5: 2281-2288 (2004) https://doi.org/10.1021/bm049690f
  94. Park HM, Liang X, Mohanty AK, Misra M, Drzal LT. Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37: 9076-9082 (2004) https://doi.org/10.1021/ma048958s
  95. Cho MS, Choi SH, Nam JD, Lee Y. Preparation and mechanical properties of nanocomposite of cellulose diacetate/mentmorillonite. Polymer (Korea) 28: 551-555 (2004)
  96. Ruan D, Zhang L, Zhang Z, Xia X. Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J. Polym. Sci. Pol. Phys. 42: 367-373 (2003) https://doi.org/10.1002/polb.10664
  97. Zhang L, Ruan D, Gao S. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J. Polym. Sci.: Part B: Polym. Phys. 40: 1521-1529 (2002) https://doi.org/10.1002/polb.10215
  98. Dufresne A, Vignon MR. Improvement of starch film performances using cellulose microfibrols. Macromolecules 31: 2693-2696 (1998) https://doi.org/10.1021/ma971532b
  99. Berglund L. Cellulose-based nanocomposites. pp. 808-832. In: Natural Fibers, Biopolymers, and Biocomposites. Mohanty AK, Misra M, Drzal LT (eds). CRC Press, Boca Raton, FL, USA (2005)
  100. Lu Y, Weng L, Zhang L. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5: 1046-1051 (2004) https://doi.org/10.1021/bm034516x
  101. Nair KG, Dufresene A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4: 657-665 (2003) https://doi.org/10.1021/bm020127b
  102. Nair KG, Dufresene A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4: 666-674 (2003) https://doi.org/10.1021/bm0201284
  103. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughs M, Hill C, Rials TG, Wild PM. Current international research into cellulose fibers and composites. J. Mater. Sci. 36: 2107-2131 (2001) https://doi.org/10.1023/A:1017512029696
  104. Curvelo AAS, Carvalho AJF, Agnelli JAM. Thermoplastic starchcellulose composites: Preliminary results. Carbohyd. Polym. 45: 183-188 (2001) https://doi.org/10.1016/S0144-8617(00)00314-3
  105. Anglès MN, Dufresne A. Plasticized starch/Tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33: 8344- 8354 (2000) https://doi.org/10.1021/ma0008701
  106. Anglès MN, Dufresne A. Plasticized starch/Tunicin whiskers nanocomposites. 2. Mechanical behavior. Macromolecules 34: 2921-2931 (2001) https://doi.org/10.1021/ma001555h
  107. Dufresne A, Dupeyre D, Vignon MR. Cellulose microfibrils from potato tuber cells: Processing and characterization of starchcellulose microfibril composites. J. Appl. Polym. Sci. 76: 2080- 2092 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U
  108. Baumberger S, Lapierre C, Monties B, Della Valle G. Use of kraft lignin as filler for starch films. Polym. Degrad. Stabil. 59: 273-277 (1998) https://doi.org/10.1016/S0141-3910(97)00193-6
  109. Dufresne A. High performance nanocomposite materials from thermoplastic matrix and polysaccharide fillers. Recent Res. Devel. Macromol. Res. 3: 455-474 (1998)
  110. Dufresne A, Cavaillé JY, Helbert W. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modeling. Polym. Composite 18: 198-210 (1997) https://doi.org/10.1002/pc.10274
  111. Helbert W, Cavaillé JY, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym. Composite 17: 604-611 (1996) https://doi.org/10.1002/pc.10650
  112. Dufresne A, Cavaillé JY, Helbert W. New nanocomposite materials: Microcrystalline starch reinforced thermoplastic. Macromolecules 29: 7624-7626 (1996) https://doi.org/10.1021/ma9602738
  113. Lin KF, Hsu CY, Huang TS, Chiu WYM, Lee YH, Young TH. A novel method to prepare chitosan/montmorillonite nanocomposites. J. Appl. Polym. Sci. 98: 2042-2047 (2005) https://doi.org/10.1002/app.22401
  114. Xu Y, Ren X, Hanna MA. Chitosan/clay nanocomposite film preparation and characterization. J. Appl. Polym. Sci. 99: 1684- 1691 (2006) https://doi.org/10.1002/app.22664
  115. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX. Biopolymer chitosan/montmorillonite nanocomopsites: Preparation and characterization. Polym. Degrad. Stabil. 90: 123-131 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.03.001
  116. Rhim JW. Effect of clay concentration on mechanical and water barrier properties of chitosan-based nanocomposite films. Food Sci. Biotechnol. 15: 925-930 (2006)
  117. Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 15: 3774-3780 (2003) https://doi.org/10.1021/cm0343047
  118. Otaigbe JU, Adams DO. Bioabsorbable soy protein plastic composites: Effect of polyphosphate fillers on water absorption and mechanical properties. J. Environ. Polym. Degr. 5: 199-208 (1997)
  119. Rhim JW, Lee JH, Kwak HS. Mechanical and barrier properties of soy protein and clay mineral composite films. Food Sci. Biotechnol. 14: 112-116 (2005)
  120. Dean K, Yu L. Biodegrdable protein-nanocomposites. pp. 289-309. In: Biodegradable Polymers for Industrial Application. Smith R (ed). CRC Press, Boca Raton, FL, USA (2005)
  121. Zheng JP, Li P, Ma YL, Yao KD. Gelatin/montmorillonite hybrid nanocomposite. I. Preparation and properties. J. Appl. Polym. Sci. 86: 1189-1194 (2002) https://doi.org/10.1002/app.11062
  122. Ozdemir M, Floros JD. Active food packaging technology. Crit. Rev. Food Sci. 44: 185-193 (2004) https://doi.org/10.1080/10408690490441578
  123. Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J. Developments in active packaging of foods. Trends Food Sci. Tech. 10: 77-86 (1999) https://doi.org/10.1016/S0924-2244(99)00032-1
  124. Cha DS, Chinnan MS. Biopolymer-based antimicrobial packaging: A review. Crit. Rev. Food Sci. 44: 223-237 (2004) https://doi.org/10.1080/10408690490464276
  125. Cagri A, Ustunol Z, Ryser ET. Antimicrobial edible films and coatings. J. Food Protect. 67: 833-848 (2004) https://doi.org/10.4315/0362-028X-67.4.833
  126. Labuza TP, Breene WM. Applications of active packaging for improvement of shel-life and nutritional quality of fresh and extended shelf-life foods. J. Food Process Pres. 13: 1-69 (1989) https://doi.org/10.1111/j.1745-4549.1989.tb00090.x
  127. Han JH, Floros JD. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast Film Sheet 13: 287-289 (1997) https://doi.org/10.1177/875608799701300405
  128. Weng YM, Chen MJ. Sorbic anhydride and antimicotic additive in polyethylene food packaging films. Food Sci. Technol. 30: 485- 487 (1997)
  129. Ming X, Weber GH, Ayres JW, Sandine WE. Bacteriocin applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62: 423-415 (1997)
  130. Padgett T, Han IY, Dawson PL. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J. Food Protect. 61: 1130-1335 (1998)
  131. Ishitani T. Active packaging for food quality preservation in Japan. pp. 177-188. In: Foods and Packaging Materials-Chemical Interactions. Ackerman P, Jagerstad M, Oglsson M (eds). Royal Society of Chemistry, Cambridge, UK (1995)
  132. Halek W, Garg A. Fungal inhibition by a fungicide coupled to an ionomeric film. J. Food Safety 9: 215-222 (1989) https://doi.org/10.1111/j.1745-4565.1988.tb00522.x
  133. Weng YM, Hochkiss JH. Inhibition of surface molds on cheese by polyethylene film containing the antimycotic imazalil. J. Food Protect. 55: 367-369 (1992) https://doi.org/10.4315/0362-028X-55.5.367
  134. Del Nobile MA, Cannaris M, Altieri C, Sinigaglia M, Favia P, Iacoviello G, D'Agostino R. Effect of Ag-containing nanocomposite active packaging system on survival of Alicyclobacillus acidoterrestris. J. Food Sci. 69: E379-E383 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09899.x
  135. Siragusa GA, Dickson JS. Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in a calcium alginate gel. J. Food Sci. 57: 293-296 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb05479.x
  136. Torres JA, Motoki M, Karel M. Microbial stabilization of intermediate moisture food surfaces. I. Control of surface preservative concentration. J. Food Process. Pres. 9: 75-92 (1985) https://doi.org/10.1111/j.1745-4549.1985.tb00711.x
  137. Ouattara B, Simard RE, Piette G, Begin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int. J. Food Microbiol. 62: 139-148 (2000) https://doi.org/10.1016/S0168-1605(00)00407-4
  138. Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67: 1162-1169 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb09470.x
  139. Weng YM, Hochkiss JH. Anhydrides as antimycotic agents added to polyethylene films for food packaging. Packag. Technol. Sci. 6: 123-128 (1993) https://doi.org/10.1002/pts.2770060304
  140. Park SI, Daeschel MA, Zhao Y. Functional properties of antimicrobial lysozyme-chitosan composite films. J. Food Sci. 69: 215-221 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09890.x
  141. Coma V, Deschamps A, Martial-Gros A. Bioactive packaging materials from edible chitosan polymers - Antimicrobial activity assessment on dairy-related contaminants. J. Food Sci. 68: 2788- 2792 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb05806.x
  142. Gällstedt M, Hedenqvist MS. Oxygen and water barrier properties of coated whey protein and chitosan films. J. Polym. Environ. 10: 1-4 (2002) https://doi.org/10.1023/A:1021068304169
  143. Park SY, Marsh KS, Rhim JW. Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J. Food Sci. 67: 194-197 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb11382.x
  144. Rhim JW, Weller CL, Ham KS. Characteristics of chitosan films as affected by the type of solvent acid. Food Sci. Biotechnol. 7: 263- 268 (1998)
  145. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Application and mode of action. Biomacromolecules 4: 1457-1465 (2003) https://doi.org/10.1021/bm034130m
  146. Ikejima T, Inoue Y. Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan. Carbohyd. Polym. 41: 351-356 (2000) https://doi.org/10.1016/S0144-8617(99)00105-8
  147. Olabarrieta I, Forsstrom D, Gedde UW, Hedenqvist MS. Transport properties of chitosan and whey blended with poly($\varepsilon$-caprolactone) assessed by standard permeability measurements and microcalorimetry. Polymer 42: 4401-4406 (2001) https://doi.org/10.1016/S0032-3861(00)00680-7
  148. Senda T, He Y, Inoue Y. Biodegradable blends of poly($\varepsilon$- caprolactone) with $\alpha$-chitin and chitosan: specific interactions, thermal properties, and crystallization behavior. Polym. Int. 51: 33- 39 (2001) https://doi.org/10.1002/pi.793
  149. Suyatma NE, Copinet A, Tighzert L, Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends. J. Polym. Environ. 12: 1-6 (2004) https://doi.org/10.1023/B:JOOE.0000003121.12800.4e
  150. Liao Y, Wang Q, Xia H. Preparation of poly(butyl methacrylate)/$\gamma$- $Al_2O_3$ nanocomposites via ultrasonic irradiation. Polym. Int. 50: 207-212 (2002) https://doi.org/10.1002/1097-0126(200102)50:2<207::AID-PI608>3.0.CO;2-L
  151. Hugo WB, Russel AD. Types of antimicrobial agents. pp. 7-68. In: Principles and Practice of Disinfection, Preservation, and Sterilization. Russel AD, Hugo WB, Ayliffe GAJ (eds). Blackwell Scientific Publications, Oxford, UK (1992)
  152. Kim CH, Choi JW, Chun HJ, Choi SK. Synthesis of chitosan derivatives with quarternary ammonium salt and their antibacterial activity. Polym. Bull. 38: 387-393 (1997) https://doi.org/10.1007/s002890050064
  153. Gottenbos B, Van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. In vitro and in vivo antimicrobial activity of covalently coupled quarternary ammonium silane coatings on silicone rubber. Biomaterials 23: 1417-1423 (2002) https://doi.org/10.1016/S0142-9612(01)00263-0
  154. Kim JY, Lee JK, Lee TS, Park WH. Synthesis of chitooligosacharide derivative with quarternary ammonium group and its antimicrobial activity against Streptococcus mutans. Int. J. Biol. Macromol. 32: 23-27 (2003) https://doi.org/10.1016/S0141-8130(03)00021-7
  155. Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y. Preparation, characterization, and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47: 6738-6744 (2006) https://doi.org/10.1016/j.polymer.2006.07.026