Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F. (Laboratory for Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science) ;
  • Yoon, Sung-Sik (Department of Biological Resources and Technology, Yonsei University) ;
  • Diep, Dzung B. (Laboratory for Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science)
  • Published : 2007.10.31

Abstract

Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

Keywords

References

  1. Chun W, Hancock RE. Action of lysozyme and nisin mixtures against lactic acid bacteria. Int. J. Food Microbiol. 60: 25-32 (2000) https://doi.org/10.1016/S0168-1605(00)00330-5
  2. Schved F, Henis Y, Juven BJ. Response of spheroplasts and chelatorpermeabilized cells of Gram-negative bacteria to the actionof the bacteriocins pediocin SJ-1 and nisin. Int. J. Food Microbiol. 21: 305-314 (1994) https://doi.org/10.1016/0168-1605(94)90060-4
  3. Galvez A, Maqueda M, Martinez-Bueno M, Valdivia E. Bactericidal and bacteriolytic action of peptide antibiotic AS-48 against Grampositive and Gram-negative bacteria and other organisms. Res. Microbiol. 140: 57-68 (1989) https://doi.org/10.1016/0923-2508(89)90060-0
  4. Luders T, BirkemoGA, Fimland G, Nissen-Meyer J, Nes IF. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl. Environ. Microb. 69: 1797-1799 (2003) https://doi.org/10.1128/AEM.69.3.1797-1799.2003
  5. Konisky J. Colicins and other bacteriocins with established modes of action. Ann. Rev. Microbiol. 36: 125-144 (1982) https://doi.org/10.1146/annurev.mi.36.100182.001013
  6. Oh SJ, Heo HJ, Park DJ, Kim SH, Lee SJ, Imm JY. Effect of encapsulated bacteriocin on acid production and growth of starter cultures in yoghurt. Food Sci. Biotechnol. 15: 902-907 (2006)
  7. Lim SM, Park MY, Chang DS. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 Isolated from meju. Food Sci. Biotechnol. 14: 49-57 (2005)
  8. Lee NK, Kim KT, Kim CJ, Paik HD. Optimized production of lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 isolated from jeotgal. Food Sci. Biotechnol. 13: 6-10 (2004)
  9. Kolter R, Moreno F. Genetics of ribosomally synthesized peptide antibiotics. Ann. Rev. Microbiol. 46: 141-163 (1992) https://doi.org/10.1146/annurev.mi.46.100192.001041
  10. Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788 (2005) https://doi.org/10.1038/nrmicro1273
  11. Bonelli RG, Wiedemann I, Sahl HG. Lanli biotics. pp. 97-105. In: Handbook of Biological Active Peptides. Academic Press, San Diego, CA, USA (2006)
  12. Breukink E. A lesson in efficient killing from two-component lantibiotics. Mol. Microbiol. 61: 271-273 (2006) https://doi.org/10.1111/j.1365-2958.2006.05239.x
  13. Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105: 633-684 (2005) https://doi.org/10.1021/cr030105v
  14. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. R. 70: 564-582 (2006) https://doi.org/10.1128/MMBR.00016-05
  15. Dufour A, Hindre T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol. Rev. 31: 134-167 (2007) https://doi.org/10.1111/j.1574-6976.2006.00045.x
  16. Jack RW, Jung G. Lantibiotics and microcins: Polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4: 310-317 (2000) https://doi.org/10.1016/S1367-5931(00)00094-6
  17. Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 1405-1414 (2004) https://doi.org/10.1016/j.peptides.2003.10.021
  18. Patton GC, van der Donk WA. New developments in lantibiotic biosynthesis and mode of action. Curr. Opin. Microbiol. 8: 543-551 (2005) https://doi.org/10.1016/j.mib.2005.08.008
  19. Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced by lactic acid bacteria: Structure, function, and applications. Anton. Van Leeuw. 82: 165-185 (2002) https://doi.org/10.1023/A:1020660321724
  20. Xie L, van der Donk WA. Post-translational modifications during lantibiotic biosynthesis. Curr. Opin. Chem. Biol. 8: 498-507 (2004) https://doi.org/10.1016/j.cbpa.2004.08.005
  21. Jack RW, Bierbaum G, Sahl HG. Lantibiotics and Related Peptides. Springer-Verlag Berlin, Germany. pp. 1-224 (1998)
  22. Jung G. Lantibiotics: A survey. pp. 1-35. In: Nisin and Novel Lantibiotics. Jung G, Sahl H-G (eds). ESCOM Science Publishers, Leiden, The Netherlands (1991)
  23. Pag U, Sahl HG. Multiple activities in lantibiotics--models for the design of novel antibiotics? Curr. Pharm. Design 8: 815-833 (2002) https://doi.org/10.2174/1381612023395439
  24. Cotter PD, Hill C, Ross RP. Bacterial lantibiotics: Strategies to improve therapeutic potential. Curr. Protein Pept. Sc. 6: 61-75 (2005) https://doi.org/10.2174/1389203053027584
  25. Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins-the lantibiotics. Biopolymers 55: 62-73 (2000) https://doi.org/10.1002/1097-0282(2000)55:1<62::AID-BIP60>3.0.CO;2-Y
  26. Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl. Environ. Microb. 72: 1459-1466 (2006) https://doi.org/10.1128/AEM.72.2.1459-1466.2006
  27. Siezen RJ, Kuipers OP, de Vos WM. Comparison of lantibiotic gene clusters and encoded proteins. Anton. Van Leeuw. 69: 171-184 (1996) https://doi.org/10.1007/BF00399422
  28. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304 (1995) https://doi.org/10.1074/jbc.270.45.27299
  29. McAuliffe O, Hill C, Ross RP. Each peptide of the two-component lantibiotic lacticin 3147 requires a separate modification enzyme for activity. Microbiology 146: 2147-2154 (2000) https://doi.org/10.1099/00221287-146-9-2147
  30. Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. Plantaricin W from Lactobacillus plantarum belongs to a new family of twopeptide lantibiotics. Microbiology 147: 643-651 (2001) https://doi.org/10.1099/00221287-147-3-643
  31. Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob. Agents Ch. 49: 541-548 (2005) https://doi.org/10.1128/AAC.49.2.541-548.2005
  32. Ra R, Beerthuyzen MM, de Vos WM, Saris PE, Kuipers OP. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145: 1227- 1233 (1999) https://doi.org/10.1099/13500872-145-5-1227
  33. Havarstein LS, Holo H, Nes IF. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140: 2383-2389 (1994) https://doi.org/10.1099/13500872-140-9-2383
  34. Havarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16: 229-240 (1995) https://doi.org/10.1111/j.1365-2958.1995.tb02295.x
  35. Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C. Extensive post-translational modification, including serine to Dalanine conversion, in the two-component lantibiotic, lacticin 3147. J. Biol. Chem. 274: 37544-37550 (1999) https://doi.org/10.1074/jbc.274.53.37544
  36. Skaugen M, Nissen-Meyer J, Jung G, Stevanovic S, Sletten K, Inger C, Abildgaard M, Nes IF. In vivo conversion of L-serine to Dalanine in a ribosomally synthesized polypeptide. J. Biol.Chem. 269: 27183-27185 (1994)
  37. Cotter PD, O'Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP. Posttranslational conversion of L-serines to Dalanines is vital for optimal production and activity of the lantibiotic lacticin 3147. P. Natl. Acad. Sci. USA 102: 18584-18589 (2005)
  38. Kluskens LD, Kuipers A, Rink R, de Boef E, Fekken S, Driessen AJ, Kuipers OP, Moll GN. Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibioticnisin. Biochemistry 44: 12827-12834 (2005) https://doi.org/10.1021/bi050805p
  39. Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311: 1464-1467 (2006) https://doi.org/10.1126/science.1121422
  40. Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA. Lacticin 481: In vitro reconstitution of lantibiotic synthetase activity. Science 303: 679-681 (2004) https://doi.org/10.1126/science.1092600
  41. Ruhr E, Sahl HG. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob. Agents Ch. 27: 841-845 (1985) https://doi.org/10.1128/AAC.27.5.841
  42. Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: Biosynthesis of lantibiotics. Anton. Van Leeuw. 69: 109-117 (1996) https://doi.org/10.1007/BF00399416
  43. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361-2364 (1999) https://doi.org/10.1126/science.286.5448.2361
  44. Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin, and other lantibiotics. Mol. Microbiol. 30: 317-327 (1998) https://doi.org/10.1046/j.1365-2958.1998.01065.x
  45. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276: 1772-1779 (2001) https://doi.org/10.1074/jbc.M006770200
  46. Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG. Mode of action of the lantibiotic mersacidin: Inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob. Agents Ch. 39: 714-719 (1995) https://doi.org/10.1128/AAC.39.3.714
  47. Brotz H, Bierbaum G, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur. J. Biochem. 246: 193-199 (1997) https://doi.org/10.1111/j.1432-1033.1997.t01-1-00193.x
  48. Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Ch. 42: 154-160 (1998)
  49. Wiedemann I, Bottiger T, Bonelli RR, Schneider T, Sahl HG, Martinez B. Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl. Environ. Microb. 72: 2809-2814 (2006) https://doi.org/10.1128/AEM.72.4.2809-2814.2006
  50. Bauer R, Chikindas ML, Dicks LM. Purification, partial amino acid sequence, and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int. J. Food Microbiol. 101: 17-27 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.10.040
  51. Navaratna MA, Sahl HG, Tagg JR. Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect. Immun. 67: 4268-4271 (1999)
  52. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB. Genetic structure of the Enterococcus faecalis plasmid pAD1- encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 176: 7335-7344 (1994) https://doi.org/10.1128/jb.176.23.7335-7344.1994
  53. McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. P. Natl. Acad. Sci. USA 103: 17243- 17248 (2006)
  54. Hyink O, Balakrishnan M, Tagg JR. Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol. Lett. 252: 235-241 (2005) https://doi.org/10.1016/j.femsle.2005.09.003
  55. O'Connor EB, Cotter PD, O'Connor P, O'Sullivan O, Tagg JR, Ross RP, Hill C. Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics, and biological activity. BMC Microbiol 7: 24 (2007) https://doi.org/10.1186/1471-2180-7-24
  56. Morgan SM, O'Connor P, Cotter PD, Ross RP, Hill C. Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob. Agents Ch. 49: 2606-2611 (2005) https://doi.org/10.1128/AAC.49.7.2606-2611.2005
  57. Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG. The mode of action of the lantibiotic lacticin 3147--a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol. Microbiol. 61: 285-296 (2006) https://doi.org/10.1111/j.1365-2958.2006.05223.x
  58. Hoffmann A, Pag U, Wiedemann I, Sahl HG. Combination of antibiotic mechanisms in lantibiotics. Farmaco 57: 685-691 (2002) https://doi.org/10.1016/S0014-827X(02)01208-9
  59. Heng NCK, Tagg JR. What's in a name? Class distinction for bacteriocins. Nature Reviews Microbiology 4. Available online at http://www.nature.com/nrmicro/journal/v4/full/nrmicro1273-cI.html. Accessed Sept. 1, 2006
  60. Maqueda M, Galvez A, Bueno MM, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E. Peptide AS-48: Prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci. 5: 399-416 (2004) https://doi.org/10.2174/1389203043379567
  61. Diep DB, Havarstein LS, Nes IF. A bacteriocin-like peptide induces bacteriocin synthesis in Lb. plantarum C11. Mol. Microbiol. 18: 631-639 (1995) https://doi.org/10.1111/j.1365-2958.1995.mmi_18040631.x
  62. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H. Biosynthesis of bacteriocins in lactic acid bacteria. Anton. Van Leeuw. 70: 113-128 (1996) https://doi.org/10.1007/BF00395929
  63. Diep DB, Havarstein LS, Nes IF. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178: 4472-4483 (1996) https://doi.org/10.1128/jb.178.15.4472-4483.1996
  64. Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez PE, Nes IF. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806-6814 (2000) https://doi.org/10.1128/JB.182.23.6806-6814.2000
  65. Franke CM, Leenhouts KJ, Haandrikman AJ, Kok J, Venema G, Venema K. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J. Bacteriol. 178: 1766- 1769 (1996) https://doi.org/10.1128/jb.178.6.1766-1769.1996
  66. Varcamonti M, Nicastro G, Venema G, Kok J. Proteins of the lactococcin A secretion system: lcnD encodes two in-frame proteins. FEMS Microbiol. Lett. 204: 259-263 (2001) https://doi.org/10.1111/j.1574-6968.2001.tb10894.x
  67. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microb. 63: 4321- 4330 (1997)
  68. Leer RJ, van der Vossen JM, van Giezen M, van Noort JM, Pouwels PH. Genetic analysis ofacidocin B, a novel bacteriocin produced by Lb. acidophilus. Microbiology 141: 1629-1635 (1995) https://doi.org/10.1099/13500872-141-7-1629
  69. Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 178: 3585-3593 (1996) https://doi.org/10.1128/jb.178.12.3585-3593.1996
  70. Worobo RW, Van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 3143-3149 (1995) https://doi.org/10.1128/jb.177.11.3143-3149.1995
  71. Tichaczek PS, Nissenmeyer J, Nes IF, Vogel RF, Hammes WP. Characterization of the bacteriocins curvacin-a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Syst. Appl. Microbiol. 15: 460-468 (1992) https://doi.org/10.1016/S0723-2020(11)80223-7
  72. Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138: 2715-2720 (1992) https://doi.org/10.1099/00221287-138-12-2715
  73. Allende A, Martinez B, Selma V, Gil MI, Suarez JE, Rodriguez A. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiol. 24: 759-766 (2007) https://doi.org/10.1016/j.fm.2007.03.002
  74. Nes IF, Brede DA, Holo H. The non-lantibiotic heat-stable bacteriocins in Gram-positive bacteria. pp. 107-114. In: Handbook of Biological Active Peptides. Kastin J (ed). Academic Press, San Diego, CA, USA (2006)
  75. Ennahar S, Sonomoto K, Ishizaki A. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87: 705-716 (1999) https://doi.org/10.1016/S1389-1723(99)80142-X
  76. Henderson JT, Chopko AL, van Wassenaar PD. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295: 5-12 (1992) https://doi.org/10.1016/0003-9861(92)90480-K
  77. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vandenbergh PA. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microb. 58: 2360-2367 (1992)
  78. Nieto Lozano JC, Meyer JN, Sletten K, Pelaz C, Nes IF. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. Microbiol. 138: 1985-1990 (1992) https://doi.org/10.1099/00221287-138-9-1985
  79. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microb. 62: 1676-1682 (1996)
  80. Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500 (1991) https://doi.org/10.1128/jb.173.23.7491-7500.1991
  81. Hechard Y, Derijard B, Letellier F, Cenatiempo Y. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138: 2725- 2731(1992) https://doi.org/10.1099/00221287-138-12-2725
  82. Chen Y, Ludescher RD, Montville TJ. Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl. Environ. Microb. 64: 3530-3532 (1998)
  83. Chikindas ML, Garcia-Garcera MJ, Driessen AJ, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN, Venema G. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microb. 59: 3577-3584 (1993)
  84. Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microb. 64: 3275-3281 (1998)
  85. Katla T, Naterstad K, Vancanneyt M, Swings J, Axelsson L. Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl. Environ. Microb. 69: 4431-4417 (2003) https://doi.org/10.1128/AEM.69.8.4431-4437.2003
  86. Fimland G, Pirneskoski J, Kaewsrichan J, Jutila A, Kristiansen PE, Kinnunen PK, Nissen-Meyer J. Mutational analysis and membraneinteractions of the beta-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. Biochim. Biophys. Acta 1764: 1132-1140 (2006) https://doi.org/10.1016/j.bbapap.2006.04.007
  87. Ennahar S, Deschamps N. Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microb. 88: 449-457 (2000) https://doi.org/10.1046/j.1365-2672.2000.00985.x
  88. Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VG, Nissen-Meyer J. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 182: 2643-2648 (2000) https://doi.org/10.1128/JB.182.9.2643-2648.2000
  89. Fimland G, Eijsink VG, Nissen-Meyer J. Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148: 3661-3670 (2002) https://doi.org/10.1099/00221287-148-11-3661
  90. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: The C-terminal region is important for determining specificity. Appl. Environ. Microb. 62: 3313-3318 (1996)
  91. Johnsen L, Fimland G, Nissen-Meyer J. The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem. 280: 9243-9250 (2005) https://doi.org/10.1074/jbc.M412712200
  92. Fimland G, Jack R, Jung G, Nes IF, Nissen-Meyer J. The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the Cterminus. Appl. Environ. Microb. 64: 5057-5060 (1998)
  93. Wang Y, Henz ME, Gallagher NL, Chai S, Gibbs AC, Yan LZ, Stiles ME, Wishart DS, Vederas JC. Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38: 15438-15447 (1999) https://doi.org/10.1021/bi991351x
  94. Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: Spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36: 15062- 15072 (1997) https://doi.org/10.1021/bi971263h
  95. Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42: 11417-11426 (2003) https://doi.org/10.1021/bi034572i
  96. Fimland G, Eijsink VG, Nissen-Meyer J. Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41: 9508-9515 (2002) https://doi.org/10.1021/bi025856q
  97. Morisset D, Berjeaud JM, Marion D, Lacombe C, Frere J. Mutational analysis of mesentericin y105, an anti-Listeria bacteriocin, for determination of impact on bactericidal activity, in vitro secondary structure, and membrane interaction. Appl. Environ. Microb. 70: 4672-4680 (2004) https://doi.org/10.1128/AEM.70.8.4672-4680.2004
  98. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. P. Natl. Acad. Sci. USA 104: 2384-2389 (2007)
  99. Garneau S, Martin NI, Vederas JC. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84: 577-592 (1986) https://doi.org/10.1016/S0300-9084(02)01414-1
  100. Allison GE, Klaenhammer TR. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillusspecific, food-grade genetic marker. Appl. Environ. Microb. 62: 4450-4460 (1996)
  101. Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J. Antagonistic activity of Lb. plantarumC11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microb. 64: 2269-2272 (1998)
  102. Stanton C, Ross RP, Hill C. Salivaricin P, one of a family of twocomponent antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl. Environ. Microb. 73: 3719-3723 (2007) https://doi.org/10.1128/AEM.00666-06
  103. Blom H, Katla T, Holck A, Sletten K, Axelsson L, Holo H. Characterization, production, and purification of leucocin H, a twopeptide bacteriocin from Leuconostoc MF215B. Curr. Microbiol. 39: 43-48 (1999) https://doi.org/10.1007/PL00006825
  104. Cuozzo SA, Sesma F, Palacios JM, de Ruiz Holgado AP, Raya RR. Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lb. casei CRL 705. FEMS Microbiol. Lett. 185: 157-161 (2000) https://doi.org/10.1111/j.1574-6968.2000.tb09055.x
  105. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148: 973-984 (2002) https://doi.org/10.1099/00221287-148-4-973
  106. Franz CM, Grube A, Herrmann A, Abriouel H, Starke J, Lombardi A, Tauscher B, Holzapfel WH. Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl. Environ. Microb. 68: 2550-2554 (2002) https://doi.org/10.1128/AEM.68.5.2550-2554.2002
  107. Ghrairi T, Frere J, Berjeaud JM, Manai M. Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. Int. J. Food Microbiol. 105: 389-398 (2005) https://doi.org/10.1016/j.ijfoodmicro.2005.04.019
  108. Majhenic AC, Venema K, Allison GE, Matijasic BB, Rogelj I, Klaenhammer TR. DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lb. gasseri LF221. Appl. Microbio. Biot. 63: 705-714 (2004) https://doi.org/10.1007/s00253-003-1424-2
  109. Maldonado A, Ruiz-Barba JL, Floriano B, Jimenez-Diaz R. The locus responsible for production of plantaricin S, a class IIb bacteriocin produced by Lb. plantarum LPCO10, is widely distributed among wild-type Lb. plantarum strains isolated from olive fermentations. Int. J. Food Microbiol. 77: 117-124 (2002) https://doi.org/10.1016/S0168-1605(02)00049-1
  110. McCormick JK, Poon A, Sailer M, Gao Y, Roy KL, McMullen LM, Vederas JC, Stiles ME, Van Belkum MJ. Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl. Environ. Microb. 64: 4757-4766 (1998)
  111. Moll GN, van den Akker E, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol. 181: 4848-4852 (1999)
  112. Vaughan A, Eijsink VG, Van Sinderen D. Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl. Environ. Microb. 69: 7194-7203 (2003) https://doi.org/10.1128/AEM.69.12.7194-7203.2003
  113. Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686- 5692 (1992) https://doi.org/10.1128/jb.174.17.5686-5692.1992
  114. Moll G, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Mechanistic properties of the two-component bacteriocin lactococcin G. J. Bacteriol. 180: 96-99 (1998)
  115. Hauge HH, Nissen-Meyer J, Nes IF, Eijsink VG. Amphiphilic alpha-helices are important structural motifs in the alpha and beta peptides that constitute the bacteriocin lactococcin G--enhancement of helix formation upon alpha-beta interaction. Eur. J. Biochem. 251: 565-572 (1998) https://doi.org/10.1046/j.1432-1327.1998.2510565.x
  116. Hauge HH, Mantzilas D, Eijsink VG, Nissen-Meyer J. Membranemimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K. J. Bacteriol. 181: 740-747 (1999)
  117. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl. Environ. Microb. 72: 3383-3389 (2006) https://doi.org/10.1128/AEM.72.5.3383-3389.2006
  118. Oppegard C, Fimland G, Thorbaek L, Nissen-Meyer J. Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl. Environ. Microb. 73: 2931-2938 (2007) https://doi.org/10.1128/AEM.02718-06
  119. Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. Lactococcin G is a potassium ionconducting, two-component bacteriocin. J. Bacteriol. 178: 600-605 (1996) https://doi.org/10.1128/jb.178.3.600-605.1996
  120. Skaugen M, Cintas L, Nes IF. Genetics of bacteriocin production in lactic acid bacteria. Vol. 3, pp. 225-249. In: Genetic of Lactic Acid Bacteria. Wood BJB, Warner PJ (eds). Kluwer Academic/ Plenum Publishers, London, UK (2003)
  121. Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879-3887 (1991) https://doi.org/10.1128/jb.173.12.3879-3887.1991
  122. Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y, Vandenesch F. Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun. 65: 95-100 (1997)
  123. Watson DC, Yaguchi M, Bisaillon JG, Beaudet R, Morosoli R. The amino acid sequence of a gonococcal growth inhibitor from Staphylococcus haemolyticus. Biochem. J. 252: 87-93 (1988) https://doi.org/10.1042/bj2520087
  124. Brock TD, Davie JM. Probable identity of a group D hemolysin with a bacteriocine. J. Bacteriol. 86: 708-712 (1963)
  125. Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microb. 61: 2643-2648 (1995)
  126. Gajic O, Buist G, Kojic M, Topisirovic L, Kuipers OP, Kok J. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J. Biol. Chem. 278: 34291-34298 (2003) https://doi.org/10.1074/jbc.M211100200
  127. Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J. Mol. Biol. 311: 939-949 (2001) https://doi.org/10.1006/jmbi.2001.4885
  128. Criado R, Diep DB, Aakra A, Gutierrez J, Nes IF, Hernandez PE, Cintas LM. Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bcteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl. Environ. Microb. 72: 6653-6656 (2006) https://doi.org/10.1128/AEM.00859-06
  129. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS. Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J. Bacteriol. 180: 1988-1994 (1998)
  130. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin derived peptide with antimicrobial, antiviral, antitumor, and immunological properties. Cell Mol. Life Sci. 62: 2588-2598 (2005) https://doi.org/10.1007/s00018-005-5373-z
  131. Birkemo GA, Luders T, Andersen O, Nes IF, Nissen-Meyer J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim. Biophys. Acta 1646: 207-215 (2003) https://doi.org/10.1016/S1570-9639(03)00018-9
  132. Booth MC, Hatter KL, Miller D, Davis J, Kowalski R, Parke DW, Chodosh J, Jett BD, Callegan MC, Penland R, Gilmore MS. Molecular epidemiology of Staphylococcus aureus and Enterococcus faecalis in endophthalmitis. Infect. Immun. 66: 356-360 (1998)
  133. Luders T, Birkemo GA, Nissen-Meyer J, Andersen O, Nes IF. Proline conformation-dependent antimicrobial activity of a prolinerich histone h1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob. Agents Ch. 49: 2399-2406 (2005) https://doi.org/10.1128/AAC.49.6.2399-2406.2005
  134. Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Co. 218: 408-413 (1996) https://doi.org/10.1006/bbrc.1996.0071
  135. Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structureactivity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. P. Nat. Aca. Sci. USA 97: 8245-8250 (2000)
  136. Richards RC, O'Neil DB, Thibault P, Ewart KV. Histone H1: An antimicrobial protein of Atlantic salmon (Salmo salar). Biochem. Biophys. Res. Co. 284: 549-555 (2001) https://doi.org/10.1006/bbrc.2001.5020
  137. Putsep K, Branden CI, Boman HG, Normark S. Antibacterial peptide from Helicobacter pylori. Nature 398: 671-672 (1999) https://doi.org/10.1038/19439
  138. Brede DA, Faye T, Johnsborg O, Odegêard I, Nes IF, Holo H. Heterologous production of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl. Environ. Microb. 71: 8077-8084 (2004) https://doi.org/10.1128/AEM.71.12.8077-8084.2005
  139. Faye T, Brede DA, Langsrud T, Nes IF, Holo H. An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J. Bacteriol. 184: 3649-3656 (2002) https://doi.org/10.1128/JB.184.13.3649-3656.2002
  140. Brede DA, Faye T, Johnsborg O, Odegard I, Nes IF, Holo H. Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl. Environ. Microb. 70: 7303-7310 (2004) https://doi.org/10.1128/AEM.70.12.7303-7310.2004
  141. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29: 1097-1106 (2001) https://doi.org/10.1093/nar/29.5.1097
  142. Zheng G, Yan LZ, Vederas JC, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355 (1999)
  143. Birkemo GA, Mantzilas D, Luders T, Nes IF, Nissen-Meyer J. Identification and structural analysis of the antimicrobial domain in hipposin, a 51-mer antimicrobial peptide isolated from Atlantic halibut. Biochim. Biophys. Acta 1699: 221-227 (2004) https://doi.org/10.1016/S1570-9639(04)00064-0
  144. Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 437: 258-262 (1998) https://doi.org/10.1016/S0014-5793(98)01238-1
  145. Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J. Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl. Environ. Microb. 69: 5839-5848 (2003) https://doi.org/10.1128/AEM.69.10.5839-5848.2003
  146. Joosten HM, Nunez M, Devreese B, Van Beeumen J, Marugg JD. Purification and characterization of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4. Appl. Environ. Microb. 62: 4220-4223 (1996)
  147. Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1. J. Bacteriol. 179: 7843-7855 (1997) https://doi.org/10.1128/jb.179.24.7843-7855.1997
  148. Diaz M, Valdivia E, Martinez-Bueno M, Fernandez M, Soler- Gonzalez AS, Ramirez-Rodrigo H, Maqueda M. Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl. Environ. Microb. 69: 1229- 1236 (2003) https://doi.org/10.1128/AEM.69.2.1229-1236.2003
  149. Martinez-Bueno M, Valdivia E, Galvez A, Coyette J, Maqueda M. Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol. Microbiol. 27: 347-358 (1998) https://doi.org/10.1046/j.1365-2958.1998.00682.x
  150. Joosten HM, Rodriguez E, Nunez M. PCR detection of sequences similarto the AS-48 structural gene in bacteriocin-producing enterococci. Lett. Appl. Microbiol. 24: 40-42 (1997) https://doi.org/10.1046/j.1472-765X.1997.00349.x
  151. Gonzalez C, Langdon GM, Bruix M, Galvez A, Valdivia E, Maqueda M, Rico M. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. P. Natl. Acad. Sci. USA 97: 11221-11226 (2000)
  152. Bizani D, Dominguez AP, Brandelli A. Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbiol. 41: 269-273 (2005) https://doi.org/10.1111/j.1472-765X.2005.01748.x
  153. Cobos ES, Filimonov VV, Galvez A, Maqueda M, Valdivia E, Martinez JC, Mateo PL. AS-48: A circular protein with an extremely stable globular structure. FEBS Lett. 505: 379-382 (2001) https://doi.org/10.1016/S0014-5793(01)02841-1
  154. Cobos ES, Filimonov VV, Galvez A, Valdivia E, Maqueda M, Martinez JC, Mateo PL. The denaturation of circular enterocin AS- 48 by urea and guanidinium hydrochloride. Biochim. Biophys. Acta 1598: 98-107(2002) https://doi.org/10.1016/S0167-4838(02)00341-2
  155. Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T. Production, purification, and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int. J. Food Microbiol. 34: 145-156 (1997) https://doi.org/10.1016/S0168-1605(96)01180-4
  156. Kawai Y, Saito T, Kitazawa H, Itoh T. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Biosci. Biotech. Bioch. 62: 2438-2440 (1998) https://doi.org/10.1271/bbb.62.2438
  157. Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, TatenoY, Itoh T, Saito T. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl. Environ. Microb. 70: 2906-2911 (2004) https://doi.org/10.1128/AEM.70.5.2906-2911.2004
  158. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers OP, Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microb. 69: 1589-1597 (2003) https://doi.org/10.1128/AEM.69.3.1589-1597.2003
  159. Dalet K, Cenatiempo Y, Cossart P, Hechard Y. A sigma(54)- dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147: 3263-3269 (2001) https://doi.org/10.1099/00221287-147-12-3263
  160. Hechard Y, Pelletier C, Cenatiempo Y, Frere J. Analysis of sigma (54)-dependent genes in Enterococcus faecalis: A mannose PTS permease EII(Man) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147: 1575-1580 (2001) https://doi.org/10.1099/00221287-147-6-1575
  161. Ramnath M, Beukes M, Tamura K, Hastings JW. Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Appl. Environ. Microb. 66: 3098-3101 (2000) https://doi.org/10.1128/AEM.66.7.3098-3101.2000
  162. Rawlinson EL, Nes IF, Skaugen M. Identification of the DNAbinding site of the Rgg-like regulator LasX within the lactocin S promoter region. Microbiology 151: 813-823 (2005) https://doi.org/10.1099/mic.0.27364-0
  163. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM. Quorum sensing by peptide pheromones and two-component signaltransduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895-904 (1997) https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  164. Kleerebezem M, de Vos WM, Kuipers OP. The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. pp. 159-174. In: Cell-Cell Signaling in Bacteria. Dunny GM, Winans SC (eds). ASM Press, Washington DC, USA (1999)
  165. Nes IF, Eijsink VGH. Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechansims. pp. 175-192. In: Cell- Cell Signaling in Bacteria. Dunny GM, Winans SC (eds). ASM Press, Washington DC, USA (1999)
  166. Diep DB, Myhre R, Johnsborg O, Aakra A, Nes IF. Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol. Microbiol. 47: 483-494 (2003) https://doi.org/10.1046/j.1365-2958.2003.03310.x
  167. Risoen PA, Havarstein LS, Diep DB, Nes IF. Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Gen. Genet. 259: 224-232 (1998)
  168. Risoen PA, Johnsborg O, Diep DB, Hamoen L, Venema G, Nes IF. Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol. Genet. Genomics 265: 198-206 (2001) https://doi.org/10.1007/s004380000397
  169. Diep DB, Johnsborg O, Risoen PA, Nes IF. Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum. Mol. Microbiol. 41: 633-644 (2001) https://doi.org/10.1046/j.1365-2958.2001.02533.x
  170. Risoen PA, Brurberg MB, Eijsink VG, Nes IF. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 37: 619- 628 (2000) https://doi.org/10.1046/j.1365-2958.2000.02029.x
  171. Straume D, Kjos M, Nes IF, Diep DB. Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol. Genet. Genomics 278: 283-293 (2007) https://doi.org/10.1007/s00438-007-0251-z
  172. Haas W, Shepard BD, Gilmore MS. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415: 84-87 (2002) https://doi.org/10.1038/415084a
  173. McAuliffe O, O'Keeffe T, Hill C, Ross RP. Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol. Microbiol. 39: 982-993 (2001) https://doi.org/10.1046/j.1365-2958.2001.02290.x
  174. Sulavik MC, Clewell DB. Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J. Bacteriol. 178: 5826- 5830 (1996) https://doi.org/10.1128/jb.178.19.5826-5830.1996
  175. Sulavik MC, Tardif G, Clewell DB. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J. Bacteriol. 174: 3577-3586 (1992) https://doi.org/10.1128/jb.174.11.3577-3586.1992
  176. Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect. Immun. 68: 2475-2483 (2000) https://doi.org/10.1128/IAI.68.5.2475-2483.2000
  177. Chaussee MS, Ajdic D, Ferretti JJ. The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect. Immun. 67: 1715-1722 (1999)
  178. Lyon WR, Gibson CM, Caparon MG. A role for trigger factor and an rgg-like regulator in the transcription, secretion, and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J. 17: 6263-6275 (1998) https://doi.org/10.1093/emboj/17.21.6263
  179. Qi F, Chen P, Caufield PW. Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl. Environ. Microb. 65: 652-658 (1999)
  180. Mortvedt CI, Nissen-Meyer J, Sletten K, Nes IF. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microb. 57: 1829-1834 (1991)
  181. Skaugen M, Andersen EL, Christie VH, Nes IF. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl. Environ. Microb. 68: 720-727 (2002) https://doi.org/10.1128/AEM.68.2.720-727.2002
  182. Rawlinson EL, Nes IF, Skaugen M. LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor. Biochimie 84: 559-567 (2002) https://doi.org/10.1016/S0300-9084(02)01420-7
  183. Dupuy B, Raffestin S, Matamouros S, Mani N, Popoff MR, Sonenshein AL. Regulation of toxin and bacteriocin gene expression in Clostridiumby interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60: 1044-1057 (2006) https://doi.org/10.1111/j.1365-2958.2006.05159.x
  184. Garnier T, Cole ST. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J. Bacteriol. 168: 1189-1196 (1986) https://doi.org/10.1128/jb.168.3.1189-1196.1986
  185. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. P. Natl. Acad. Sci. USA 104: 7617-7621 (2007)
  186. Tominaga T, Hatakeyama Y. Development of innovativepediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl. Environ. Microb. 73: 5292-5299 (2007) https://doi.org/10.1128/AEM.00558-07
  187. Nes IF, Diep DB, Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189: 1189-1198 (2007) https://doi.org/10.1128/JB.01254-06
  188. Nes IF, Johnsborg O. Exploration of antimicrobial potential in LAB by genomics. Curr. Opin. Biotechnol. 15: 100-104 (2004) https://doi.org/10.1016/j.copbio.2004.02.001
  189. de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 34: W273-W279 (2006) https://doi.org/10.1093/nar/gkl237
  190. Netz DJ, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos Mdo C, Sahl HG. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J. Mol. Biol. 319: 745-756 (2002) https://doi.org/10.1016/S0022-2836(02)00368-6
  191. Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J. Mol. Biol. 311: 939-949 (2001) https://doi.org/10.1006/jmbi.2001.4885
  192. Floriano B, Ruiz-Barba JL, Jimenez-Diaz R. Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl. Environ. Microb. 64: 4883-4890 (1998)
  193. Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Appl. Environ. Microb. 73: 2871-2877 (2007) https://doi.org/10.1128/AEM.02286-06
  194. Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M. Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl. Environ. Microb. 69: 5746-5753 (2003) https://doi.org/10.1128/AEM.69.10.5546-5553.2003
  195. Sánchez-Hidalgo M, Maqueda M, Galvez A, Abriouel H, Valdivia E, Martínez-Bueno M. The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl. Environ Microb. 69: 1633-1641 (2003) https://doi.org/10.1128/AEM.69.3.1633-1641.2003
  196. Faye T, Brede DA, Langsrud T, Nes IF, Holo H. An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J. Bacteriol. 184: 3649-3656 (2002) https://doi.org/10.1128/JB.184.13.3649-3656.2002
  197. Kawai Y, Kemperman R, Kok J, Saito T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci. 5: 393-398 (2004) https://doi.org/10.2174/1389203043379549
  198. Kalmokoff ML, Teather RM. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: Evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens. Appl. Environ. Microb. 63: 394-402 (1997)
  199. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: A novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153: 1619-1630 (2007) https://doi.org/10.1099/mic.0.2006/005967-0