Effect of [6]-Gingerol, a Pungent Ingredient of Ginger, on Osteoblast Response to Extracellular Reducing Sugar

  • Kim, Young-Ho (College of Pharmacy, Chungnam National University) ;
  • Nguyen, Huu Thng (College of Pharmacy, Chungnam National University) ;
  • Ding, Yan (College of Pharmacy, Chungnam National University) ;
  • Park, Sang-Heock (College of Pharmacy, Chungnam National University) ;
  • Choi, Eun-Mi (College of Pharmacy, Chungnam National University)
  • Published : 2007.10.31

Abstract

Diabetes is marked by high glucose levels and is associated with decreased bone mass and increased fracture rates. To determine if [6]-gingerol could influence osteoblast dysfunction induced by 2-deoxy-D-ribose (dRib), osteoblastic MC3T3-E1 cells was treated with dRib and [6]-gingerol and markers of osteoblast function and oxidized protein were examined. [6]-Gingerol ($10^{-7}\;M$) significantly increased the growth of MC3T3-E1 cells in the presence of 30 mM dRib (p<0.05). [6]-Gingerol ($10^{-7}\;M$) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and osteocalcin secretion in the cells. We then examined the effect of [6]-gingerol on the production of osteoprotegerin and protein carbonyl in osteoblasts. Treatment with [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) increased osteoprotegerin secretion in osteoblastic cells. Moreover, [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) decreased protein carbonyl contents of osteoblastic MC3T3-E1 cells in the presence of 30 mM dRib. Taken together, these results demonstrate that [6]-gingerol inhibits dRib-induced damage and may be useful in the treatment of diabetes related bone diseases.

Keywords

References

  1. Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metast. Rev. 21: 231-255 (2002) https://doi.org/10.1023/A:1021254725842
  2. Lim TS, Oh HI, Kwon JH, Kim HK. Physiological activities of ginger extracts originated from different habitat. Food Sci. Biotechnol. 15: 143-147 (2006)
  3. Yoo MJ, Kim YS, Shin DH. Antibacterial effects of natural essential oils from ginger and mustard against Vibrio species inoculated on sliced raw flatfish. Food Sci. Biotechnol. 15: 462-465 (2006)
  4. Manochai B, Paisooksantivatana Y, Kim MJ, Hong JH. Antioxidant activity and total volatile oil content of cassumunar ginger (Zingiber montanum Roxb.) at various rhizome ages. Food Sci. Biotechnol. 16: 290-293 (2007)
  5. Newall CA, Anderson LA, Phillipson JD. Herbal Medicines: A Guide For Health-Care Professionals. Vol. 4. Pharmaceutical Press, London, UK. pp. 35-40 (1996)
  6. Wang CC, Chen LG, Lee LT, Yang LL. Effect of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo 17: 641-645 (2003)
  7. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780 (2003) https://doi.org/10.1038/nrc1189
  8. Tjendraputra E, Ammit AJ, Roufogalis BD, Tran VH, Duke CC. Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb. Res. 111: 259-265 (2003) https://doi.org/10.1016/j.thromres.2003.09.009
  9. Ippoushi K, Azuma K, Ito H, Horie H, Higashio H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 73: 3427-3437 (2003) https://doi.org/10.1016/j.lfs.2003.06.022
  10. Tjendraputra E, Tran VH, Liu-Brennan D, Roufogalis BD, Duke CC. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem. 29: 156- 163 (2001) https://doi.org/10.1006/bioo.2001.1208
  11. Kim DSHL, Kim JY. Side-chain length is important for shogaols in protecting neuronal cells from $\alpha$-amyloid insult. Bioorg. Med. Chem. Lett. 14: 1287-1289 (2004) https://doi.org/10.1016/j.bmcl.2003.12.041
  12. Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M, Hosoya E. Pharmacological studies on ginger. I. Pharmacological actions of pungent constitutents, (6)-gingerol and (6)-shogaol. J. Pharmacobio-Dynam. 7: 836-848 (1984) https://doi.org/10.1248/bpb1978.7.836
  13. Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem. Pharm. Bull. 40: 387-391 (1992) https://doi.org/10.1248/cpb.40.387
  14. Krakauer J, McKenna M, Burderer N, Rao D, Whitehouse F, Pafitt A. Bone loss and bone turnover in diabetes. Diabetes 44: 775-782 (1995) https://doi.org/10.2337/diabetes.44.7.775
  15. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, Taniguchi N. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem. J. 320: 855-863 (1996) https://doi.org/10.1042/bj3200855
  16. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213: 222-224 (1981) https://doi.org/10.1126/science.12192669
  17. Koh G, Suh KS, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS. Elevated cAMP level attenuates 2-deoxy-D-ribose-induced oxidative damage in pancreatic $\beta$-cells. Arch. Biochem. Biophys. 438: 70-79 (2005) https://doi.org/10.1016/j.abb.2005.03.018
  18. Kanno S, Anuradha CD, Hirano S. Localization of zinc after in vitro mineralization in osteoblastic cells. Biol. Trace Elem. Res. 83: 39- 47 (2001) https://doi.org/10.1385/BTER:83:1:39
  19. Quarles LD, Yohai DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 7: 683-692 (1992) https://doi.org/10.1002/jbmr.5650070613
  20. Wlodarski KH, Peddi AH. Alkaline phosphates as a marker of osteoinductive cells. Calcified Tissue Int. 39: 382-385 (1986) https://doi.org/10.1007/BF02555175
  21. Gronthos S, Chen S, Wang CY, Robey P, Sha S. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of cbfa1, osterix, and osteocalcin. J. Bone Miner. Res. 18: 716-722 (2003) https://doi.org/10.1359/jbmr.2003.18.4.716
  22. Noda M, Yoon K, Rodan GA, Koppel DE. High lateral mobility of endogenous and transfected alkaline phosphatase: A phosphatidyli-nositol-anchored membrane protein. J. Cell Biol. 105: 1671-1677 (1987) https://doi.org/10.1083/jcb.105.4.1671
  23. Tsuda E, Goto M, Mochizuki SI, Yano K, Kobayashi F, Morinaga T, Higashio K. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Bioph. Res. Co. 234: 137-142 (1997) https://doi.org/10.1006/bbrc.1997.6603
  24. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175- 179 (1999) https://doi.org/10.1038/36593
  25. Coucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, Brabbs AC, Van Beek EJR, Holen I, Skerry TM, Dunstan CR, Russell GR, Van Camp B, Vanderkerken K. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98: 3534-3540 (2001) https://doi.org/10.1182/blood.V98.13.3534
  26. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. J. 256: 205-212 (1988) https://doi.org/10.1042/bj2560205
  27. Yoshida O, Inaba M, Terada M, Shioi A, Nishizawa Y, Otani S, Morii H. Impaired response of human osteosarcoma (MG-63) cells to human parathyroid hormone induced by sustained exposure to high glucose. Miner. Electrol. Metab. 21: 201-204 (1995)
  28. Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest. 99: 144-150 (1997) https://doi.org/10.1172/JCI119126
  29. Kikuzaki H, Nakatani N. Antioxidant effect of some ginger constituents. J. Food Sci. 58: 1407-1410 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06194.x