Effect of Fucoidan on Expression of Diabetes Mellitus Related Genes in Mouse Adipocytes

  • Kim, Kui-Jin (Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Lee, Ok-Hwan (Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Lee, Han-Chul (Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Kim, Young-Cheul (Department of Nutrition, University of Massachusetts) ;
  • Lee, Boo-Yong (Graduate School of Complementary Alternative Medicine, College of Medicine, Pochon CHA University)
  • Published : 2007.04.30

Abstract

Fucoidan (fucan sulfate) is a fucose-containing sulfated polysaccharide from brown algae such as Fucus vesiculosus, Ecklonia kurome, and Cladosiphon okamuranus. The aim of this study was to investigate the effect of fucoidan on the expression of diabetes-related genes in mouse cell line 3T3-L1. 3T3-L1 adipocytes were cultured for 48 hr with or without fucoidan (10, 100, and 500 ppm) on a 60 mm dish. Reverse transcription polymerase chain reaction (RT-PCR) was used for measurement of peroxisome proliferators activated receptor ${\gamma}\;(PPAR{\gamma})$, CCAAT/enhancer binding protein ${\alpha}\;(C/EBP{\gamma})$, and glucose transporter 4 (GLUT4) RT-PCR analysis revealed that expression level of GLUT4, $PPAR{\gamma}$, and $C/EBP{\alpha}$ mRNAs increased with fucoidan treatment from 10 to 500 ppm in a dose-dependent manner. Fucoidan appears to enhance insulin sensitivity by increasing the expression level of diabetes-related genes in 3T3-L1 adipocytes. Therefore, fucoidan is potentially useful as a natural therapeutic material for hyperglycemia in type II diabetes patients.

Keywords

References

  1. Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 52: 1091-1094 (2004) https://doi.org/10.1248/cpb.52.1091
  2. Li N, Zhang Q, Song J. Toxicological evaluation of fucoidan extracted from Larninaria japonica in Wistar rats. Food. Chem. Toxicol. 43: 421-426 (2005) https://doi.org/10.1016/j.fct.2004.12.001
  3. Patankar MS, Oehninger S, Bamett T, Williams RL, Clark GF. A revised structure for fucoidan may explain some of its biological activities. J. BioI. Chem. 268: 21770-21776 (1993)
  4. Beress A, Wassermann O, Tahhan S, Bruhn T, Beress L, Kraiselburd EN. A new procedure for the isolation of anti-HlV compounds (polysaccharide and polyphenols) from the marine algae Fucus vesiculosus. J. Nat. Prod. 56: 478-488 (1993) https://doi.org/10.1021/np50094a005
  5. Blondin C, Chaubet F, Nardella A, Sinquin C, Jozefonvicz J. Relationships between chemical characteristics and anticomplementary activity of fucans. Biomaterials 17: 597-603 (1996) https://doi.org/10.1016/0142-9612(96)88710-2
  6. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C. Relationship between sulfate groups and biological activities of fucans. Thromb. Res. 100: 453-459 (2000) https://doi.org/10.1016/S0049-3848(00)00338-8
  7. Bojakowski K, Abramczyk P, Bojakowska M, Zwolinska A, Przybylski, J, Gaciong Z. Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. J. Physiol. Phamarcol. 52: 137-143 (2001)
  8. Kim YM, Kim DS, Chpi YS. Anticoagulant activities brown seaweed extracts in Korea. Food Sci. Biotechnol. 36: 1008-1013 (2004)
  9. Korean Diabetes Association, http://www.diabetes.or.kr/publication/index.html. Accessed Apr. 30, 2006
  10. Jacobson PB, von Geldem TW, Ohman L, Osterland M, Wang J, Zinker B, Wilcox D, Nguyen PT, Mika A, Fung S, Fey T, GoosNilsson A, Grynfarb M, Barkhem T, Marsh K, Beno DW, NgaNguyen B, Kym PR, Link JT, Tu N, Edgerton DS, Cherrington A, Efendic S, Lane BC, Opgenorth TJ. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. J. Pharmacol. Exp. Ther. 314: 191-200 (2005) https://doi.org/10.1124/jpet.104.081257
  11. O'Moore-Sullivan TM, Prins JB. Thiazolidinediones and type 2 diabetes: new drugs for an old disease. Med. J. Australia 176: 381-386 (2002)
  12. Konno S, Tortorelis DG, Fullerton SA, Samadi AA, Hettiarachchi J, Tazaki H. A possible hypoglycaemic effect of maitake mushroom on Type 2 diabetic patients. Diabetic. Med. 18: 1010 (2001) https://doi.org/10.1111/j.1469-8749.2008.00039.x-i1
  13. Lamela M, Anca J, Villar R, Otero J, Calleja JM. Hypoglycemic activity of several seaweed extracts. J. Ethnopharmacol. 27: 35-43 (1989) https://doi.org/10.1016/0378-8741(89)90075-5
  14. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Gene Dev. 5: 1538-1552 (1991) https://doi.org/10.1101/gad.5.9.1538
  15. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373 (1995) https://doi.org/10.1146/annurev.bi.64.070195.002021
  16. Kaestner KH, Christy RJ, Lane MD. Mouse insulin-responsive glucose transporter gene: characterization of the gene and transactivation by the CCAAT/enhancer binding protein. P. Natl, Acad. Sci. USA 87: 251-255 (1990) https://doi.org/10.1073/pnas.87.1.251
  17. Christy RJ, Tang VW, Ntambi JM, Geiman DE, Landschulz WH. Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Gene Dev. 3: 1323-1335 (1989) https://doi.org/10.1101/gad.3.9.1323
  18. Chao L, Marcus-Samuels B, Mason MM, Moitra J, Vinson C, Arioglu E, Gavrilova O, Reitman ML. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106: 1221-1228 (2000) https://doi.org/10.1172/JCI11245
  19. Birkenmeier EH, Gwynn B, Howard S, Jerry J, Gordon JI, Landschulz WH, McKnight SL. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Gene Dev. 3: 1146-1156 (1989) https://doi.org/10.1101/gad.3.8.1146
  20. Lemberger T, Braissant O, Juge AC, Keller H, Saladin R, Staels B, Auwerx J, Burger AG, Meier CA, Wahli W. PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann. NY Acad. Sci. 804: 231-251 (1996) https://doi.org/10.1111/j.1749-6632.1996.tb18619.x
  21. Staels B, Schoonjans K, Fruchart JC, Auwerx J. The effects of fibrates and thiazolidinediones on plasma triglyceride metabolism are mediated by distinct peroxisome proliferator activated receptors (PPARs). Biochimie 79: 95-99 (1997) https://doi.org/10.1016/S0300-9084(97)81497-6
  22. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135: 798-800 (1994) https://doi.org/10.1210/en.135.2.798
  23. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Gene Dev. 8: 1224-1234 (1994) https://doi.org/10.1101/gad.8.10.1224
  24. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147-1156 (1994) https://doi.org/10.1016/0092-8674(94)90006-X
  25. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. P. Natl. Acad. Sci. USA 92: 9856-9860 (1995) https://doi.org/10.1073/pnas.92.21.9856
  26. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803-812 (1995) https://doi.org/10.1016/0092-8674(95)90193-0
  27. Kliewer SA, Lenfard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819 (1995) https://doi.org/10.1016/0092-8674(95)90194-9
  28. Bryant NJ, Govers B, Hane DE. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell. BioI. 3: 267-277 (2002) https://doi.org/10.1038/nrm782
  29. Abel ED, Peroni OD, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729-733 (2001) https://doi.org/10.1038/35055575
  30. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6: 924-928 (2000) https://doi.org/10.1038/78693
  31. Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. BioI. Chem. 268: 22243-22246 (1993)
  32. Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J. Clin. Invest. 101: 2377-2386 (1998) https://doi.org/10.1172/JCI1557
  33. Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. BioI. Chem. 255: 4745-4750 (1980)
  34. Wu Z, Nycher NLR, Fanner SR. Induction of peroxisome proliferatoractivated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell BioI. 16: 4128-4136 (1996) https://doi.org/10.1128/MCB.16.8.4128
  35. Christy RJ, Kaestner KH, Geiman DE, Lane MD. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. P. Natl. Acad. Sci. USA 88: 2593-2597 (1991) https://doi.org/10.1073/pnas.88.6.2593
  36. Wu Z, Rosen ED, Brun R, Hauser S, Adelmont G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM. Cross-regulation of C/EBP$\alpha$ and PPAR$\gamma$ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3: 151-158 (1999) https://doi.org/10.1016/S1097-2765(00)80306-8
  37. McKeon C, Pham T. Transactivation of the human insulin receptor gene by the CAAT/enhancer binding protein. Biochem. Bioph. Res. Co. 174: 721-728 (1991) https://doi.org/10.1016/0006-291X(91)91477-T
  38. He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM. Adipose-specific peroxisome proliferatoractivated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle, P. Natl. Acad. Sci. USA 100: 15712-15717 (2003) https://doi.org/10.1073/pnas.2536828100
  39. Willson TM, Cobb JE, Cowan DJ. The structure-activity relationship between peroxisome proliferators-activated receptor gama agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39: 665-668 (1996) https://doi.org/10.1021/jm950395a
  40. Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055 (2002) https://doi.org/10.2337/diabetes.51.7.2045
  41. Berger J, Biswas C, Vicario PP, Strout HV, Saperstein R, Pilch PF. Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340: 70-72 (1989) https://doi.org/10.1038/340070a0
  42. Ciaraldi T, Henry RR. Thiazolidinediones and their effects on glucose transporters. Eur. J. Endocrinol. 137: 610-612 (1997) https://doi.org/10.1530/eje.0.1370610
  43. Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev. 25: 177-204 (2004) https://doi.org/10.1210/er.2003-0011