Morphological, Mechanical and Rheological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate/Poly$({\varepsilon}-caprolactone)$ Ternary Blends

  • Hong, John-Hee (Department of Chemical and Biological Engineering, Korea University) ;
  • Song, Ki-Heon (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Hyung-Gon (Department of Chemical and Biological Engineering, Korea University) ;
  • Han, Mi-Sun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2007.10.31

Abstract

The effects of poly($({\varepsilon}$-caprolactone) (PCL) on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) blends were studied. Blends of ABS/PC (70/30, wt%) with PCL as a compatibilizer were prepared by a twin screw extruder. From the glass transition temperature $(T_g)$ results of the ABS/PC blends with PCL, the $T_g$(PC) of the ABS/PC (70/30) blends decreased with increasing PCL content. From the results of the morphology of the ABS/PC (70/30) blends with PCL, the phase separation between the ABS and PC phases became less significant after adding PCL in the ABS/PC blends. In addition, the morphological studies of the ABS/PC blends etched by NaOH indicated that the shape of the droplet was changed from regular round to irregular round by adding PCL in the ABS/PC blends. These results for the mechanical properties of the ABS/PC blends with PCL indicated that the tensile, flexural and impact strengths of the ABS/PC (70/30) blends peaked at a PCL content of 0.5 phr. From the results for the rheological properties of the ABS/PC (70/30) blends with PCL content, the storage modulus, loss modulus and complex viscosity increased at PCL content up to 5 phr. From the above results of the $T_g$, mechanical properties, morphology and complex viscosity of the ABS/PC blends with PCL, it was concluded that the compatibility was increased with PCL addition in the ABS/PC (70/30, wt%) blends and that the optimum concentration of PCL as a compatibilizer is 0.5 phr.

Keywords

References

  1. D. R. Paul and J. W. Barlow, J. Macromol. Sci., Rev. Macromol. Chem., 18, 109 (1980)
  2. T. Karauchi and T. Ohta, J. Mater. Sci., 19, 1699 (1984)
  3. F. H. J. Maurar, J. H. M. Palmar, and H. C. Booij, Rheol. Acta, 24, 243 (1985)
  4. W. N. Kim and C. M. Bums, Polym. Eng. Sci., 28, 1115 (1988)
  5. G. Wildes, H. Keskkula, and D. R. Paul, Poymer, 40, 7089 (1999)
  6. S. Seidler and W. Grellmann, J. Polym. Mater. Sci., 28, 4073 (1993)
  7. C. G. Cho, T. H. Park, and Y. S. Kim, Polymer, 38, 4687 (1997)
  8. Z. Y. Tan, X. F. Xu, S. L. Sun, C. Zhou, Y. H. Ao, H. X. Zhang, and Y. Han, Polym. Eng. Sci., 46, 1476 (2006) https://doi.org/10.1002/pen.20584
  9. M. Ishikawa, Polymer, 36, 2203 (1995)
  10. B. I. Chaudhry, E. Hage, and L. A. Pessn, J. Appl. Polym. Sci., 67, 1605 (1998)
  11. X. Zhang, Y. Chen, Y. Zhang, Z. Peng, Y. Zhang, and W. Zhou, J. Appl. Polym. Sci., 81, 831 (2001) https://doi.org/10.1002/app.1407
  12. J. H. Park, Y. T. Sung, W. N. Kim, J. H. Hong, B. K. Hong, T. W. Yoo, and H. G Yoon, Polymer(Korea), 29, 19 (2005)
  13. K. J. Hwang, J. W. Park, I. Kim, C.-S. Ha, and G.-H. Kim, Macromol. Res., 14, 179 (2006) https://doi.org/10.1007/BF03218506
  14. H. S. Park, J. H. Lee, J. D. Nam, S. J. Seo, Y. K. Lee, Y. S. Oh, and H.-C. Jung, Macromol. Res., 14, 430 (2006) https://doi.org/10.1007/BF03219106
  15. C. A. Cruz, D. R. Paul, and J. W. Barlow, J. Appl. Polym. Sci., 23, 589 (1979)
  16. J. M. Jonza and R. S. Porter, Macromolecules, 19, 1946 (1986)
  17. D. Herrera, J.-C. Zamora, A. Bello, M. Grimau, E. Laredo, A. J. Muller, and T. P. Lodge, Macromolecules, 38, 5109 (2005) https://doi.org/10.1021/ma050481c
  18. Y. S. Chun, J. H. Park, J. B. Sun, and W. N. Kim, J. Polym. Sci. Polym. Phys. Ed., 38, 2072 (2000)
  19. M. C. Hernandez, E. Laredo, and A. Bello, Macromolecules, 35, 7301 (2002) https://doi.org/10.1021/ma011278u
  20. S. Lee, Y. Lee, and J. W. Lee, Macromol. Res., 15, 44 (2007) https://doi.org/10.1007/BF03218751
  21. S. K. Na, B. G. Kong, C. Choi, M. K. Jang, J. W. Nah, J. G. Kim, and B. W. Jo, Macromol. Res., 13, 88 (2005) https://doi.org/10.1007/BF03219020
  22. K. H. Song, J. H. Hong, Y. T. Sung, Y. H. Kim, M. S. Han, H. G. Yoon, and W. N. Kim, Polymer(Korea), 31, 283 (2007)
  23. S. C. Chiu and T. G. Smith, J. Appl. Polym. Sci., 29, 1797 (1984)
  24. S. W. Kim, W. H. Jo, M. S. Lee, M. B. Ko, and J. Y. Jho, Polymer, 42, 9837 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  25. Y. Aoki and O. Arendt, J. Appl. Polym. Sci., 82, 2037 (2001) https://doi.org/10.1002/app.1816
  26. S. A. Madbouly and T. Ougizawa, Macromol. Chem. Phys., 205, 1923 (2004) https://doi.org/10.1002/macp.200400190
  27. C. K. Kum, Y. T. Sung, Y. S. Kim, H. G. Lee, W. N Kim, H. S. Lee, and H. G. Yoon, Macromol. Res., 15, 308 (2007) https://doi.org/10.1007/BF03218792
  28. O. Olabisi, Macromolecules, 8, 316 (1975)
  29. M. Aubin and R. E. Prud'homme, Macromolecules, 21, 2945 (1988)
  30. H. D. Keith, F. J. Padden Jr., and T. P. Russel, Macromolecules, 22, 666 (1989) https://doi.org/10.1021/ma00192a076
  31. G. Defieuw, G. Groeninckx, and H. Reynaers, Polymer, 30, 595 (1989)
  32. W. H. Christiansen, D. R. Paul, and J. W. Barlow, J. Appl. Polym. Sci., 34, 537 (1987)
  33. V. S. Shah, J. D. Keitz, D. R. Paul, and J. W. Barlow, J. Appl. Polym. Sci., 32, 3863 (1986)
  34. W. N. Kim, C. E. Park, and C. M. Bums, J. Appl. Polym. Sci., 49, 1003 (1993)
  35. B. K. Kim, L. K. Yoon, and X. Xie, J. Appl. Polym. Sci., 66, 1531 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<997::AID-APP19>3.0.CO;2-K
  36. Y. S. Chun, H. S. Kwon, W. N. Kim, and H. G. Yoon, J. Appl. Polym. Sci., 78, 2488 (2000)
  37. H. J. Choi, S. H. Park, J. K. Kim, and J. I. Jun, J. Appl. Polym. Sci., 75, 417 (2000)
  38. J. I. Sohn, S. T. Lim, S. H. Park, H. J. Choi, and M. S. Jhon, J. Mater. Sci., 38, 1485 (2003) https://doi.org/10.1023/A:1022968430404