DOI QR코드

DOI QR Code

Si 기판 위에 형성된 InAs 양자점의 열처리에 의한 표면 상태의 변화

Temperature-dependent Morphology of Self-assembled InAs Quantum Dots Grown on Si Substrates

  • 유충현 (청주대학교 전자정보공학부)
  • 발행 : 2007.10.01

초록

Effect of high-temperature annealing on morphology of fully coherent self-assembled InAs quantum dots' grown on Si (100) substrates at $450^{\circ}C$ by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) was investigated by atomic force microscopy(AFM). When the dots were annealed at 500 - 600$^{\circ}C$ for 15 sec - 60 min, there was no appreciable change in the dot density but the heights of the dots increased along with the reduction in the diameters. In segregation from the InAs quantum dots and/or from the 2-dimensional InAs wetting layer which was not transformed into quantum dots looked responsible for this change in the dot size. However the change rates remained almost same regardless of annealing time and temperature, which may indicate that the morphological change due to thermal annealing is done instantly when the dots are exposed to high temperature annealing.

키워드

참고문헌

  1. Y. Arakawa and H. Sakaki, 'Multidimensional quantum well laser and temperature dependence of its threshold current', Appl. Phys. Lett., Vol. 40, No. 11, p. 939, 1982 https://doi.org/10.1063/1.92959
  2. M. Asada, Y. Miyamoto, and Y. Suematsu, 'Gain and threshold of three-dimensional quantum-box lasers', IEEE J. Quantum Electron., Vol. 22, No. 9, p. 1915, 1986 https://doi.org/10.1109/JQE.1986.1073149
  3. J. Tatebayashi, Y. Arakawa, N. Haton, H. Ebe, M. Sugawara, H. Sudo, and A. Kuramata, 'InAs/GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition-Effects of post growth annealing on stacked InAs quantum dots', Appl. Phys. Lett., Vol. 85, No. 6, p. 1024, 2004 https://doi.org/10.1063/1.1781741
  4. C. K. Chia, S. J. Chua, Z. L. Miao, and Y. H. Chye, 'Enhanced photoluminescence of InAs self-assembled quantum dots grown by molecular-beam epitaxy using a nucleation-augmented method', Appl. Phys. Lett., Vol. 85, No. 4, p. 567, 2004 https://doi.org/10.1063/1.1773914
  5. O. B. Shchekin and D. G. Deppe, '1.3 ${\mu}m$ InAs quantum dot laser with $T_{0}$ = 161 K from 0 to 80 $^{\circ}C$', Appl. Phys. Lett., Vol. 80, No. 18, p. 3277, 2002 https://doi.org/10.1063/1.1476708
  6. J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H. S. Kwack, C. W. Lee, and D. K. Oh, 'Room-temperature operation of InP-based InAs quantum dot laser', IEEE Photonics Technol. Lett., Vol 16, No. 7, p. 1607, 2004 https://doi.org/10.1109/LPT.2004.828494
  7. V. M. Ustinov, E. R. Weber, S. Ruvimov, Z. Liliental-Weber, A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, A. F. Tsatsul'nikov, and P. S. Kop'ev, 'Effect of matrix on InAs self-organized quantum dots on (001) InP substrate', Appl. Phys. Lett., Vol. 72, No. 3, p. 362, 1998 https://doi.org/10.1063/1.120737
  8. B. Wang, F. Zhao, Y. Peng, Z. Jin, Y. Li, and S. Liu, 'Self-organized InAs quantum dots formation by As/P exchange reaction on (001) InP substrate', Appl. Phys. Lett., Vol. 72, No. 19, p. 2433, 1998 https://doi.org/10.1063/1.121396
  9. R. Heitz, N. N. Ledentsov, D. Bimberg, A. Yu. Egorov, M. V. Maximov, V. M. Ustinov, A. E. Zhukov, Zh. I. Alferov, G. E. Cirlin, I. P. Soshinikov, N. D. Zakharov, P. Werner, and U. Gosele, 'Optical properties of InAs quantum dots in a Si matrix', Appl. Phys. Lett., Vol. 74, No. 12, p. 1701, 1999 https://doi.org/10.1063/1.123660
  10. M. Oshima, Y. Watanabe, S. Heun, M. Sugiyama, and T. Kiyokura, 'Initial stages of nanocrystal growth of compound semiconductors on Si substrates', J. of Electron Spectrosc. Rel. Phenom., Vol. 80, p. 129, 1996 https://doi.org/10.1016/0368-2048(96)02939-8
  11. T. Mano, H. Fujioka, K. Ono, Y. Watanabe, and M. Oshima, 'InAs nanocrystal growth on Si (100)', Appl. Surf. Sci., Vol. 130-132, p. 760, 1998 https://doi.org/10.1016/S0169-4332(98)00150-0
  12. P. C. Sharma, K. W. Alt, D. Y. Yeh, and K. L. Wang, 'Temperature-dependent morphology of three-dimensional InAs islands grown on silicon', Appl. Phys. Lett., Vol. 75, No. 9, p. 1273, 1999 https://doi.org/10.1063/1.124665
  13. G. E. Cirlin, N. K. Polyakov, V. A. Egorov, D. V. Denisov, B. V. Volovik, V. M. Ustinov, Zh. I. Alferov, N. N. Ledentsov, R. Heitz, D. Bimberg, N. D. Zakharov, P. Werner, and U. Gosele, 'Heteroepitaxial growth of InAs on Si: the new type of quantum dots', Mater. Phys. Mech., Vol. 1, p. 15, 2000
  14. N. D. Zakharov, P. Werner, U. Gosele, R. Heitz, D. Bimberg, N. N. Ledentsov, V. M. Ustinov, B. V. Volovik, Zh. I. Alferov, N. K. Polyakov, V. N. Petrov, V. A. Egorov, and G. E. Cirlin, 'Structure and optical properties of Si/InAs/Si layers grown by molecular beam epitaxy on Si substrate', Appl. Phys. Lett., Vol. 76, No. 19, p. 2677, 2000 https://doi.org/10.1063/1.126441
  15. 유충현, '대기압 MOCVD 시스템을 이용하여 Si 기판 위에 자발적으로 형성된 InAs 양자점에 대한 연구', 전기전자재료학회논문지, 18권, 6호, p. 527, 2005
  16. J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, 'Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures', Physical Review B, Vol. 40, No. 9, p. 6149, 1989 https://doi.org/10.1103/PhysRevB.40.6149
  17. K. Yamaguchi, T. Okada, and F. Hiwatashi, 'Analysis of indium surface segregation in molecular beam epitaxy of InGaAs/GaAs quantum wells', Appl. Surf. Sci., Vol. 117-118, p. 700, 1997 https://doi.org/10.1016/S0169-4332(97)80167-5
  18. M. Sato and Y. Horikoshi, 'Effect of indium replacement by gallium on the energy gaps of InAs/GaAs thin-layer structures', J. Appl. Phys., Vol. 69, No. 11, p. 7697, 1991 https://doi.org/10.1063/1.347542
  19. J. A. Gupta, S. P. Watkins, R. Ares, and G. Soerensen, 'MOVPE growth of single monolayers of InAs in GaAs studied by time-resolved reflectance difference spectroscopy', J. Cryst. Growth, Vol. 195, p. 205, 1998 https://doi.org/10.1016/S0022-0248(98)00637-X
  20. J. M. Garcia, J. P. Silveira, and F. Briones, 'Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001)', Appl. Phys. Lett., Vol. 77, No. 3, p. 409, 2000 https://doi.org/10.1063/1.126992