DOI QR코드

DOI QR Code

Growth of MnS Thin Film on c-Sapphire by Pulsed Laser Deposition

PLD 법에 의한 c-사파이어 기판위의 MnS 박막성장

  • Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University)
  • 송정환 (배재대학교 정보전자소재공학과)
  • Published : 2007.09.27

Abstract

Pulsed laser deposition was utilized to grow MnS thin films on c-sapphire substrate using a KrF excimer laser at growth temperatures that ranged from room temperature to $700^{\circ}C$. The results of X-ray diffraction (XRD) and UV-visible spectroscopy were employed to investigate the structural and optical properties of the MnS films. While the growth rate decreased as $T_s$ increased, the overall quality of the film improved. The highest quality MnS film was obtained at $700^{\circ}C$. Variations in the $T_s$ resulted in the MnS films exhibiting different growth mechanisms. The oriented (200) rocksalt MnS film was grown at room temperature. In the case of higher $T_s,\;200{\sim}500^{\circ}C$, the films consisted of mixed phases of rocksalt and wurtzite. The main structure of the films was altered to (111) rocksalt when the temperature was increased to in excess of $600^{\circ}C$. This behavior may very well be the result of elements such as surface energy and atomic arrangement during the growth process. The optical band gap of the obtained ${\alpha}-MnS$ film was estimated to be 3.32 eV.

Keywords

References

  1. R. Tappero, P. D' Areo and A. Lichanot, Chem. Phys. Lett., . 273, 83 (1997) https://doi.org/10.1016/S0009-2614(97)00591-5
  2. D. Hobbs and J. Hafner, J. Phys.: Condens. Matter, 11, 8197 (1999) https://doi.org/10.1088/0953-8984/11/42/303
  3. A. N. Kravtsova, I. E. Stekhin and A. V. Soldatov, Phys. Rev. B, 69, 134109 (2004) https://doi.org/10.1103/PhysRevB.69.134109
  4. L. Corliss, N. Elliott and J. Hastings, Phys. Rev., 104, 924 (1956) https://doi.org/10.1103/PhysRev.104.924
  5. O. Goede, W. Heimbrodt and V. Weinhold, Phys. Status Solidi (b), 136, K49 (1986) https://doi.org/10.1002/pssb.2221360155
  6. O. Goede, W. Heimbrodt, V. Weinhold, E. Schnurer and H. G. Eberle, Phys. Status Solidi (b), 143, 511 (1987) https://doi.org/10.1002/pssb.2221430212
  7. S. W. Kennedy, K. Harris and E. Summerville, J. Solid State Chem., 31, 355 (1980) https://doi.org/10.1016/0022-4596(80)90099-7
  8. Y. Zhang, H. Wang, B. Wang, H. Yan and M. Yoshimura, J. Cryst. Growth, 243, 214 (2002) https://doi.org/10.1016/S0022-0248(02)01495-1
  9. S. A. Mayen-Hernandez, S.J. Sandoval, R.C. Perez, G.T. Delgado, B.S. Chao and O.J. Sandoval, J. Cryst. Growth, 256, 12 (2003) https://doi.org/10.1016/S0022-0248(03)01315-0
  10. M. Okajima and T. Tohda, J. Cryst. Growth, 117, 810 (1992) https://doi.org/10.1016/0022-0248(92)90862-D
  11. B. J. Skromme, Y. Zhang and D. J. Smith and S. Sivananthan, Appl. Phys. Lett., 67, 2690 (1995) https://doi.org/10.1063/1.114294
  12. M. A. Akhter, Thin Solid Films, 158, 83 (1988)
  13. C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner and H. Tributsch, Thin Solid Films, 330, 70 (1998) https://doi.org/10.1016/S0040-6090(98)00500-8
  14. H. Yoshiyama, S. Tanaka, Y. Mikami, S. Ohshio, J. Nishiura, H. Kawakami and H. Kobayashi, J. Cryst. Growth, 86, 56 (1988) https://doi.org/10.1016/0022-0248(90)90698-K
  15. O. Madelung, in Landolt-Bornsten Semiconductors III/17g, Physics of Non-tetrahedrally Bonded Binary Compounds III (Springer-Verlag, Berlin, 1984)
  16. W. Giriat, J. K. Furdyna, J. K. Furdyna and J. Kossut, in Semiconductors and Semimetals (Academic Press, San Diego, CA, 1988) p.25