양극산화로 제작된 이산화티타늄 나노튜브 박막을 이용한 휴믹산 제거

Removal of Humic Acid Using Titanium Dioxide Nanotube Thin Film Fabricated by Anodization

  • Yun, Dong-Min (Department of Civil Engineering, Hanyang University) ;
  • Jang, Jun-Won (Department of Civil Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil Engineering, Hanyang University)
  • 발행 : 2008.03.31

초록

티타늄 박막을 1 M의 황산나트륨 수용액과 0.5 wt%의 불화나트륨에 의해 제조된 전해질 용액에 담지하고 전기화학적 양극산화법으로 약 20분간 20$^{\circ}C$의 온도로 수행하여 티타늄다이옥사이드 나노튜브 필름을 제작하였다. 주사전자현미경과 X선회절분석기를 이용하여 각각 미세구조와 결정구조를 측정하였으며, 나노튜브의 직경은 대략 100 nm 정도이고, 길이는 1 $\mu$m 정도로 나타났다. 이 후 티타늄다이옥사이드 나노튜브는 450에서 풀림공정을 수행하였으며, 아나타제 결정형으로 나타났다. 또한 본 연구에서는 제작된 나노튜브 박막을 이용하여 물에 용존된 휴믹산의 제거실험을 수행하였으며 Langmuir-Hinshelwood kinetic 0차 반응의 경향을 보였으며, 약 0.3 g 정도의 파우더형 광촉매와 같은 효율을 보였다.

Titanium dioxide nanotubes were fabricated by self-organized electrochemical potentiostatic anodization of titanium thin film with an electrolyte solution of sodium sulfate 1M and sodium flouride 0.5wt% aqueous solution at 20$^{\circ}C$ for 20min. Field Emmision Scanning Electron Microscopy(FE-SEM) and X-ray Diffractometer(XRD) were used to evaluate the micromorphology and crystalline structure of the titanium dioxide nanotube thin film. Titanium dioxide nanotube were fabricated with diameters approx. 100nm and tube length from appox. 1 $\mu$m. Titanium dioxide films formed through anodization and annealing process at 450$^{\circ}C$ contained a phase of anatase. Also, this study was performed to evaluate the application of titanium dioxide thin film for treating humic acid dissolved in water. The reaction tended to follow the Langmuir-Hinshelwood kinetics with zero order. Comparative experiments with thin film and anatase powder showed the same zero order kinetics when 0.3g of powder had been used.

키워드

참고문헌

  1. David, G. K. and Christoper, J. M., "Metal ion binding by humic acid, application of the NICA-Donnan model," Environ. Sci. Technol., 30, 1687-1698(1996) https://doi.org/10.1021/es950695h
  2. Kim, D. J. and Christine, L. T., "Effect of solution chemistry on the extent of binding of phenanthrene by a solid humic acid : A comparion of dissoled of clay bound humic," Environ. Sci. Technol., 33, 580-587(1999) https://doi.org/10.1021/es9803207
  3. Matthews, R. W., "Photo-oxidation of organic material in aqueous suspensions of titanium dioxide," Water Res., 20(5), 569-578(1986) https://doi.org/10.1016/0043-1354(86)90020-5
  4. Chun, H. D., "Advanced oxidation process with $TiO_{2}$ photocatalyst," J. of KSEE, 16(7), 809-818(1994)
  5. 남은정, 조일형, 최종옥, 이민환, 이홍근, "$TiO_{2}$ 광촉매를 이용한 humic acid와 중금속의 동시제거," 한국물환경학회지, 17(2), 179-190(2001)
  6. 장민환, 이승목, 양재규, "$TiO_{2}$ 광촉매를 이용한 Cr(VI)와 휴믹산의 동시제거," 대한환경공학회지, 25(6), 694-700 (2003)
  7. 김현용, 조일형, 양원호, 김민호, 이홍근, "$TiO_{2}$ 광촉매반응을 이용한 수중의 은이온 제거에 관한 연구," 대한위생학회지, 15(2), 58-64(2000)
  8. 김광욱, 김영준, 이미혜, 신동우, "$TiO_{2}$ 수용상에서의 광 촉매반응에 대한 pH, 양이온, 음이온, 용존산소, 자외선 및 유기물의 영향," Korean Chem. Eng. Res., 42(6), 762-770(2004)
  9. Quan, X., Ruan, X., Zhao, H., Chen, S., and Zhao, Y., "Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a $TiO_{2}$ nanotube film electrode," Environ. Pollut., 147(2), 409-414(2006) https://doi.org/10.1016/j.envpol.2006.05.023
  10. 최원용, "Titania 광촉매 반응 연구," J. Korean Ind. Eng. Chem., 14(8), 1011-1022(2003)
  11. Gong, D., Grimes, C. A., and Varghese, O. K., "Titanium oxide nanotube arrays prepared by anodic oxidation," 16(12), 3331-3334(2001) https://doi.org/10.1557/JMR.2001.0457
  12. Yoo, B. Y., Hernandez, S. C., Koo, B., Rheem, Y., and Myung, N. V., "Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications," Water Sci. Technol., 55(1-2), 149-156(2007)
  13. Mor, G. K., Varghese, O. K., Paulose, M., and Grimes, C. A., "Transparent highly ordered $TiO_{2}$ nanotube arrays via anodization of titanium thin films," Adv. Funct. Mater., 15, 1291-1296(2005) https://doi.org/10.1002/adfm.200500096
  14. Bauer, S., Kleber, S., and Schmuki, P., "$TiO_{2}$ nanotubes: Tailoring the geometry in $H_{3}PO_{4}/HF$ electroytes," Electrochemistry Communication, 8, 1321-1325(2006) https://doi.org/10.1016/j.elecom.2006.05.030
  15. Ghicov, A., Tsuchiya, H., Macak, J. M., and Schmuki, P., "Titanium oxide nanotubes prepared in phosphate eletroytes," Electrochemisty Communication, 7, 505-509 (2005) https://doi.org/10.1016/j.elecom.2005.03.007
  16. Oliver, D., Tracy, L. T., Goralski, E. D., Walck, S. D., and John, T. Y. jr., "The effect of nitrogen ion implantation on the photoactivity of titania rutile single crystals," J. Phys. Chem. B., 108, 52-57(2004) https://doi.org/10.1021/jp030529t
  17. Tads, H., Salto, Y., and Kawahara, H., "Photodeposition of Prussian blue on titania particles," J. Electrochem. Soc., 138(1), 140-144(1991) https://doi.org/10.1149/1.2085524
  18. Xu, Y. and Langford, C. H., "Photoactivity of titanium dioxide suppored on MCM41.Zeolite X. and Zeolite Y." J. Phys. Chem. B., 101, 3115-3121(1997) https://doi.org/10.1021/jp962494l
  19. Ao, C. H., Leung, M. K. H., Lam, R.C.W., Leung, Y. C. D., Vrijmoed, L. L. P., Yam, W. C., and Ng, S. P., "Photocatalytic decolorization of anthraquinonic dye by $TiO_{2}$ thin film under UVA and visible-light irradiation," Chem. Eng. J., 129, 153-159(2007) https://doi.org/10.1016/j.cej.2006.10.022