DOI QR코드

DOI QR Code

Structural Study of Oxygen Vacancy in CaO Stabilized Cubic-HfO2 Using Density Functional Theory

Density Functional Theory를 이용한 CaO 안정화 Cubic-HfO2의 산소 공공 구조 연구

  • Kim, Jong-Hoon (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Lee, Byeong-Eon (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Hwang, Jin-Ha (Department of Materials Science Engineering, Hongik University) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김종훈 (한국기술교육대학교, 신소재공학과) ;
  • 김대희 (한국기술교육대학교, 신소재공학과) ;
  • 이병언 (한국기술교육대학교, 신소재공학과) ;
  • 황진하 (홍익대학교, 신소재공학과) ;
  • 김영철 (한국기술교육대학교, 신소재공학과)
  • Published : 2008.12.27

Abstract

Calcia (CaO) stabilized cubic-$HfO_2$ is studied by density functional theory (DFT) with generalized gradient approximation (GGA). When a Ca atom is substituted for a Hf atom, an oxygen vacancy is produced to satisfy the charge neutrality. The lattice parameter of a $2{\times}2{\times}2$ cubic $HfO_2$ supercell then increases by $0.02\;{\AA}$. The oxygen atoms closest to the oxygen vacancy are attracted to the vacancy as the vacancy is positive compared to the oxygen ion. When the oxygen vacancy is located at the site closest to the Ca atom, the total energy of $HfO_2$ reaches its minimum. The energy barriers for the migration of the oxygen vacancy were calculated. The energy barriers between the first and the second nearest sites, the second and the third nearest sites, and the third and fourth nearest sites are 0.2, 0.5, and 0.24 eV, respectively. The oxygen vacancies at the third and fourth nearest sites relative to the Ca atom represent the oxygen vacancies in undoped $HfO_2$. Therefore, the energy barrier for oxygen migration in the $HfO_2$ gate dielectric is 0.24 eV, which can explain the origin of gate dielectric leakage.

Keywords

References

  1. C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, J. Jeong and W. Lee, Appl. Phys. Lett., 83, 1403 (2003) https://doi.org/10.1063/1.1602168
  2. K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett., 83, 2229 (2003) https://doi.org/10.1063/1.1609246
  3. S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li and C. K. Ong, Appl. Phys. Lett., 82, 2047 (2003) https://doi.org/10.1063/1.1565182
  4. G. Moore. The biggest change in transistor technology in 40 years. Intel Home Page. Retrieved January, 2006 from http://www.intel.com/technology/architecture-silicon/45nm-core2/index.htm
  5. M. Balog, M. Schieber, M. Michiman and S. Patai, Thin Solid Films, 41, 247 (1977) https://doi.org/10.1016/0040-6090(77)90312-1
  6. R. Ruh and P.W.R. Corfield, J. Am. Ceram. Soc., 53, 126 (1970) https://doi.org/10.1111/j.1151-2916.1970.tb12052.x
  7. D.M. Adams, S. Leonard, D.R. Russel, and R.J. Cernik, J. Phys. Chem. Solids, 52, 1181 (1991) https://doi.org/10.1016/0022-3697(91)90052-2
  8. A. Lakhlifi, C. Leroux, P. Satre, B. Durand, M. Roubin and G.Nihoul, J. Solid State Chem., 119, 289 (1995) https://doi.org/10.1016/0022-4596(95)80043-O
  9. C. E. Curtis, L. M. Doney and J. R. Johnson, J. Am. Ceram. Soc., 37, 458 (1953) https://doi.org/10.1111/j.1151-2916.1954.tb13977.x
  10. M. H. Hakala, A. S. Foster, J. L. Gavartin, P. Havu, M. J. Puska and R. M. Nieminen, J. Appl. Phys., 100, 043708 (2006) https://doi.org/10.1063/1.2259792
  11. J. R. Chavez, R. A. B. Devine and L. Koltunski, J. Appl. Phys., 90, 4284 (2001) https://doi.org/10.1063/1.1401796
  12. C. Tang, B. Tuttle and R. Ramprasad, Phys. Rev. B, 76, 073306 (2007) https://doi.org/10.1103/PhysRevB.76.073306
  13. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  14. G. Kresse and J. Furthmuller, Comput. Mat. Sci., 6, 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  15. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  16. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  17. D. M. Wood, and A. Zunger, J. Phys. A, 18, 1343 (1985) https://doi.org/10.1088/0305-4470/18/9/018
  18. P. Pulay, Chem. Phys. Lett., 73, 393 (1980) https://doi.org/10.1016/0009-2614(80)80396-4