청국장으로부터 Bacillus cereus에 대한 길항 균주 분리 및 길항 효과

Isolation of Bacillus spp. from Cheonggukjang and Its Antagonistic Effect against Bacillus cereus

  • Lee, Nam-Keun (Department of Biotechnology, Chung-Ang University) ;
  • Park, Joung-Whan (Department of Biotechnology, Chung-Ang University) ;
  • Cho, Il-Jae (Department of Biotechnology, Chung-Ang University) ;
  • Kim, Byung-Yong (Department of Food Science & Biotechnology, Institute of Life Sciences and Resources, Kyung-Hee University) ;
  • Kwon, Ki-Ok (Sangchon Food) ;
  • Hahm, Young-Tae (Department of Biotechnology, Chung-Ang University)
  • 발행 : 2008.12.31

초록

청국장 내에 B. cereus을 효과적으로 저지하기 위한 생물학적제어 방법의 개발을 위하여 전통적 방법으로 제조한 백태 및 흑태 청국장으로부터 총 20종의 Bacillus 속 균주를 분리하였고, 이중에서 24시간 배양액에서 B. cereus에 대한 길항활성이 가장 높은 Bacillus sp. SC-8 균주를 선별하였다. 이 균주를 B. cereus와 혼합하여 청국장을 제조한 후 길항능을 분석한 결과 청국장 발효 중에는 B. cereus에 대한 길항효과가 있었으나, 발효 후 $4^{\circ}C$ 저장 중에는 균체수가 감소하여 억제효과가 감소하는 것으로 분석되었다. 또한 대조군으로 사용하였던 Bacillus sp. SC-15 균주에서는 배양액에서는 B. cereus에 대한 길항 활성이 낮았으나 청국장 내에서는 길항효과를 보임에 따라 청국장 발효에 관여하는 균들은 배양 환경에 따라 길항물질의 생성에 차이가 있음을 보였다.

For the development of a biological control method against B. cereus in cheonggukjang, 20 Bacillus spp. were isolated from the naturally fermented baektae and heuktae cheonggukjang, identified by using 16S rDNA sequences. Among the isolated strains, Bacillus sp. SC-8 was selected using the B. cereus lawn cell assay as an antagonistic microorganism against B. cereus. The culture medium of Bacillus sp. SC-8 after 24 hr of incubation at $37^{\circ}C$ also evidenced a high level of antagonistic activity. In cheonggukjang fermented with the mixed culture of Bacillus sp. SC-8 and B. cereus, antagonistic effect against B. cereus was maintained during the fermentation of cheonggukjang, while its effect was reduced during storage at $4^{\circ}C$ due to the decrement of cell population of Bacillus sp. SC-8. In Bacillus sp. SC-15, which was utilized a control, antagonistic activity against B. cereus was not demonstrated on the lawn cell plate assay and culture medium, but its effects were detected in cheonggukjang. Therefore, the production of antagonistic substances of Bacillus spp. depends on the fermentative environment.

키워드

참고문헌

  1. Lee JJ, Cho CH, Kim JY, Kee DS, Kim HB. Antioxidant activity of substance extracted by alcohol form chungkukjang powder. Korean J. Microbiol. 37: 177-181 (2001)
  2. Chang JH, Shim YY, Kim SH, Chee KM, Cha SK. Fibrinolytic and immuno-stimulating activities of Bacillus spp. strains isolated from chungkukjang. Korean J. Food Sci. Technol. 37: 255-260 (2005)
  3. Kim JI, Kang MJ, Kwon TW. Antidiabetic effect of soybean and chongkukjang. Korea Soybean Digest 20: 44-52 (2003)
  4. Matsui T, Yoo HJ, Hwang JS, Lee DS, Kim HB. Isolation of angiotensin I-converting enzyme inhibitory peptide from chongkukjang. Korean J. Microbiol. 40: 355-358 (2004)
  5. Kim IJ, Kim HK, Chung JH, Jeong YK, Ryu CH. Study of functional chungkukjang contain fibrinolytic enzyme. Korean J. Life Sci. 12: 357-362 (2002) https://doi.org/10.5352/JLS.2002.12.3.357
  6. Kwon HY. Kim YS, Kwon GS, Kwon CS. Isolation of immunostimulating strain Bacillus pumilus JB-1 from chongkukjang and fermentational characteristics of JB-1. Korean J. Microbiol. Biotechnol. 32: 291-296 (2004)
  7. Youn HK, Choi HS, Hur SH, Hong JH. Antimicrobial activities of viscous substance from chongkukjang fermented with different Bacillus spp. J. Fd Hyg. Safety 16: 188-193 (2001)
  8. Allagheny N, Obanu ZA, Cambell-Platt G, Owens JD. Control of ammonia formation during B. subtilis fermentaion of legumes. Int. J. Food Microbiol. 29: 321-333 (1996) https://doi.org/10.1016/0168-1605(95)00069-0
  9. Youn KC, Kim JO, Park BJ, Yook HS, Cho JM, Byun MW. Quality characteristics of the cheonggukjang fermented by the mixed culture of Bacillus natto and B. licheniformis. J. Korean Soc. Food Sci. Nutr. 31: 204-210 (2002) https://doi.org/10.3746/jkfn.2002.31.2.204
  10. Kim YS, Jung HJ, Park YS, Yu TS. Characteristics of flavor and functionality of Bacillus subtilis K-20 chunggukjang. Korean J. Food Sci.Technol. 35: 475-478 (2003)
  11. Schoeni JL, Wong AC. Bacillus cereus food poisoning and its toxins. J. Food Protect. 68: 636-648 (2005) https://doi.org/10.4315/0362-028X-68.3.636
  12. Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606 (2008) https://doi.org/10.1111/j.1574-6976.2008.00112.x
  13. Coroller L, Leguerinel I, Mafart P. Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores. Appl. Environ. Microb. 67: 317-322 (2001) https://doi.org/10.1128/AEM.67.1.317-322.2001
  14. Leguerinel I, Mafart P. Modelling the influence of pH and organic acid types on thermal inactivation of Bacillus cereus spores. Int. J. Food Microbiol. 63: 29-34 (2001) https://doi.org/10.1016/S0168-1605(00)00394-9
  15. Raso J, Gngora-Nieto MM, Barbosa-Cnovas GV, Swanson BG. Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure. Int. J. Food Microbiol. 44: 125-132 (1998) https://doi.org/10.1016/S0168-1605(98)00130-5
  16. Pol IE, Mastwijk HC, Bartels PV, Smid EJ. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microb. 66: 428-430 (2000) https://doi.org/10.1128/AEM.66.1.428-430.2000
  17. Pol IE, van Arendonk WG, Mastwijk HC, Krommer J, Smid EJ, Moezelaar R. Sensitivities of germinating spores and carvacroladapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment. Appl. Environ. Microb. 67: 1693-1699 (2001) https://doi.org/10.1128/AEM.67.4.1693-1699.2001
  18. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlvaney L, Farish O. Pulsed-light inactivation of food-related microorganisms. Appl. Environ. Microb. 65: 1312-1315 (1999)
  19. Kim C, Hung YC, Brackett RE. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int. J. Food Microbiol. 61: 199-207 (2000) https://doi.org/10.1016/S0168-1605(00)00405-0
  20. Park SM, Kim HS, Yu TS. Antifungal activity of Bacillus sp. KUM-101 against gray mold Botrytis cinerea. Korean J. Microbiol. Biotechnol. 34: 63-69 (2006)
  21. Yi DH, Lee NW, Kwon TJ. Purification and characterization of an antifungal antibiotic from Bacillus subtilis LAM 97-44. J. Korean Soc. Agr. Chem. Biotechnol. 46: 69-73 (2003)
  22. He L, Chen W, Liu Y. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiol. Res. 161: 321-326 (2006) https://doi.org/10.1016/j.micres.2005.12.002
  23. Cladera-Olivera F, Caron GR, Brandelli A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256 (2004) https://doi.org/10.1111/j.1472-765X.2004.01478.x
  24. Chang JY, Lee HH, Kim IC, Chang HC. Characterization of bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr. 30: 410-414 (2001)
  25. Choi MH, Park YH. Selective control of Lactobacilli in Kimchi with nicin. Lett. Appl. Microbiol. 30: 173-177 (2000) https://doi.org/10.1046/j.1472-765x.2000.00719.x
  26. Lee NK, Jeon EH, Lee HJ, Cho IJ, Hahm YT. Isolation, identification, and characterization of Bacillus spp. from the traditionally fermented cheonggukjangs in the Gyeonggi and the Gangwon provinces. J. Korean Soc. Appl. Biol. Chem. 49: 276-280 (2006)