Increased Viability of Sub-lethal Heat Shocked Salmonella Typhimurium on Acids and Oxidants

열충격 Salmonella Typhimurium의 산과 산화제에서 생존력 증가

  • Moon, Bo-Youn (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • 문보연 (경원대학교 식품생물공학과) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Published : 2008.12.31

Abstract

In an effort to evaluate Salmonella food safety using combinations of preservation techniques, its viabilities when exposed to HCl, acetic acid, and the oxidative agents (hydrogen peroxide and butyl hydrogen peroxide), were analyzed using sub-lethal heat-shocked Salmonella Typhimurium at $56^{\circ}C$. 2D gel electrophoresis and MALDI-TOF MS analyses were also conducted to determine the expression and repression of proteins in heat-shocked cells. Heat-shocked S. Typhimurium evidenced a reduction of viable counts by 1-2 log CFU/mL. However, viality of non heat-shocked S. Typhimurium decreased markedly by 5-6 log CFU/mL at a pH 4 in response to acid and oxidative stresses. Sub-lethal heat treatment greatly increased the resistance of S. Typhimurium against acid and oxidant agents. As for 2D gel electrophoresis and protein identification via MALDI-TOF MS, 17 major proteins in non heat-shocked S. Typhimurium were detected, and only 13 proteins among these proteins were detected in heat-shocked S. Typhimurium. The heat shock proteins such as DnaK and small heat shock proteins were included, and may be associated with the resistance of S. typhimurium against exposure to acids and oxidants. Therefore, even though the promising hurdle technology using the combined mild treatments including heat was applied to S. Typhimurium, the proper heat treatment to reduce its crossprotection activity toward the following preservative agents might be considered.

Salmonella로부터 식품 안전성을 높이기 위한 보존법의 병용처리에 의한 효과를 평가하고자 S. Typhimurium을 열과 산, 산화제 등으로 연속 처리한 후 생균수를 측정하여 효과를 분석하였다. 그리고 열충격에 의하여 S. Typhimurium 내에 발현되거나 억제되는 단백질을 이차원 전기영동과 MALDI-TOF 질량분석기로 분석하였다. 열처리된 S. Typhimurium은 초산과 염산의 pH 4에서의 생균수가 1.3-1.8 log CFU/mL가 줄었고 비열처리 S. Typhimurium은 생균수가 약 5 log CFU/mL가 감소하였다. 열처리 S. Typhimurium은 butyl hydrogen peroxide와 과산화수소에서 생균수가 1.1-1.7 log CFU/mL가 줄었으나 비열처리 S. Typhimurium은 5.4-5.6 log CFU/mL 감소하였다. 충분하지 않은 사멸 열처리는 S. Typhimurium의 생존력을 증가시키고 산과 산화제 등의 보존제에서 저항성이 커지는 것을 알 수가 있었다. 이차원 전기영동과 MALDI-TOF 질량분석에 의한 발현 단백질 분석 결과 비열처리 S. Typhimurium은 17개의 단백질이 검출되었고 열처리 S. Typhimurium에는 13개의 단백질만 검출되었다. 이들 중에 열충격 단백질로 알려진 DnaK, small heat shock protein 등이 검출되었고 이들이 산과 산화제에서의 생존 저항성 증가와 관련이 있을 것으로 보인다. 그러므로 열처리를 포함하는 hurdle technology를 적용하여 식품을 보존처리할 때 다른 보존제에 대한 교차보호성이 증가되는 사실을 고려하여 적절한 열처리가 고려되어야 된다는 것을 알 수 있었다.

Keywords

References

  1. Gould GW, Jones MV. Combination and synergistic effects. pp. 401-422 In: Mechanism of Action of Food Preservation Procedures. GW Gould (ed). Elsevier, London, UK (1989)
  2. Kim JC, Kim SC, Park KJ, Jeong JW, Jeong SW. Development of dipping solution to extend a shelf-life of fresh-cut apples. Korean J. Food Sci. Technol. 38: 35-41 (2006)
  3. National Advisory Committee on Microbiological Criteria for Foods (NACMCF). Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 52: 123-153 (1999) https://doi.org/10.1016/S0168-1605(99)00135-X
  4. Kusumaningrum HD, van Asselt ED, Beumer RR, Zwietering MH. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. J. Food Protect. 67: 1892-1903 (2004) https://doi.org/10.4315/0362-028X-67.9.1892
  5. Yousef AE, Courtry PD. Basics of stress adaptation and implications in new-generation foods. pp. 2-25 In: Microbial Stress Adaptation and Food Safety. Yousef AE, Juneja VK. (eds). CRC Press, Washington D.C., USA (2003)
  6. Li Y, Brackett RE, Chen J, Beuchat LR. Survival and growth of Escherichia coli O157:H7 inoculated onto cut lettuce before or after heating in chlorinated water, followed by storage at 5 or $15{\degree}$. J. Food Protect. 64: 305-309 (2001) https://doi.org/10.4315/0362-028X-64.3.305
  7. Li Y, Brackett RE, Chen J, Beuchat LR. Mild heat treatment of lettuce enhances growth of Listeria monocytogenes during subsequent storage at 5 or $15{\degree}$. J. Appl. Microbiol. 92: 269-275 (2002) https://doi.org/10.1046/j.1365-2672.2002.01530.x
  8. Berry ED, Cutter CN. Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl. Environ. Microbiol. 66: 1493-1498 (2000) https://doi.org/10.1128/AEM.66.4.1493-1498.2000
  9. Humphrey TJ, Slater E, McAlpine K, Rowbury RJ, Gilbert RJ. Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid, or hydrogen peroxide also survive longer on surfaces. Appl. Environ. Microbiol. 61: 3161-3164 (1995)
  10. Leyer GJ, Johnson EA. Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59:1842-1847 (1993)
  11. Bacon RT, Ransom JR, Sofos JN, Kendall PA, Belk KE, Smith GC. Thermal inactivation of susceptible and multiantimicrobial-resistant Salmonella strains grown in the absence or presence of glucose. Appl. Environ. Microbiol. 69: 4123-4128 (2003) https://doi.org/10.1128/AEM.69.7.4123-4128.2003
  12. Jacobson FS, Morgan RW, Christman MF, Ames BN. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidaive damage. J. Biol. Chem. 284: 1488-1496 (1988)
  13. Bellara SR, Fryer PJ, McFarlane CM, Thomas CR, Hocking PM, Mackey BM. Visualization and modelling of the thermal inactivation of bacteria in a model food. Appl. Environ. Microbiol. 65: 3095-3099 (1999)
  14. Buning VK, Crawford RG, Tierney JP, Peeler JT. Thermotoleance f Listeria monpcytogenes and Salmonella typhimurium after sublethal heat shock. Appl. Environ. Microbiol. 56: 3216-3219 (1990)
  15. Canovas D, Fletcher SA, Hayashi M, Csonka LN. Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. Appl. Environ. Microbiol. 183: 3365-3371 (2001)
  16. Wang G, Doyle MP. Heat shock response enhances acid tolerance of Escherichia coli O157:H7. Lett. Appl. Microbiol. 26: 31-34 (1998) https://doi.org/10.1046/j.1472-765X.1998.00264.x
  17. Berkelman T, Stenstedt T. 2D Electrophoresis using immobilized pH gradients-Principles and Methods. Amersham Biosciences, Uppsala, Sweden (2002)
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  19. Simpson RJ. Proteins and Proteomics (A laboratory manual). CSHL Press, Cold Spring Harbor, USA. pp 452-595 (2003)
  20. Folster JW. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J. Bacteriol. 175: 1981-1987 (1993) https://doi.org/10.1128/jb.175.7.1981-1987.1993
  21. Foster JW, Specter MP. How Salmonella survive against the odds. Annu. Rev. Microbiol. 49: 145-174 (1995) https://doi.org/10.1146/annurev.mi.49.100195.001045
  22. Mekalonos JJ. Enviromental signal controlling expression of virulence determinants in bacteria. J. Bacteriol. 174: 1-7 (1992) https://doi.org/10.1128/jb.174.1.1-7.1992
  23. Langet, T, Echols LC, Flanagan HJ, Hayer MK, Harl FU. Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperon-mediated protein folding. Nature 356: 683-689 (1992) https://doi.org/10.1038/356683a0