Elucidation of the Vulcanization Structures of Filled cis-1,4-Polybutadiene Rubber by Solid State Carbon-13 NMR Spectroscopy

고체상태 NMR을 이용한 cis-1,4-polybutadiene 충진고무의 가황가교 구조 규명

  • Kim, Su-Dong (Dept. of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Eun-Kyung (Small and Medium Business Administration) ;
  • Ryu, Ju-Whan (Dept. of Polymer Science and Engineering, Chungnam National University)
  • 김수동 (충남대학교 공과대학 바이오응용화학부) ;
  • 박은경 (중소기업청) ;
  • 류주환 (충남대학교 공과대학 바이오응용화학부)
  • Published : 2008.12.31

Abstract

Using solid state $^{13}C$ NMR, polybutadiene rubber vulcanizates were qualitatively and quantitatively analyzed. In the filled conventional system of BR vulcanizate accelerated with TBBS, addition to the olefinic double bond and substitution in the $\alpha$ position to the double bond occurred simultaneously. Also the latter $\alpha$ substitution reaction was faster than the former addition reaction at initial reaction time. In addition, it was suggested that double bond-addition-polysulfide structures might be modified into 5-membered and 6-membered cyclic structures in overcure time. These chain modifications were correlated with the decrease in the chemical crosslink density in overcure time.

고체상태 $^{13}C$ NMR을 이용하여 폴리부타디엔 고무(BR) 가황체의 정성 및 정량분석을 행하였다. TBBS로 촉진된 기존의 충진 BR 가황체에서는 올레핀성 이중결합에의 부가반응과 이중결합 옆의 $\alpha$ 위치에서의 치환반응이 동시에 일어났다. 또한 반응 초기에는 이중결합 옆의 $\alpha$ 위치에서의 치환반응은 이중결합에의 부가반응보다 빠르게 진행되었다. 한편 과가류(overcure) 시간 동안 이중결합-부가 폴리설파이드 구조는 5각형 및 6각형 고리 구조로 변형되는 것으로 추정되었다. 이러한 사슬 변형은 과가류 시간에 발생하는 화학적 가교 밀도와 상관되었다.

Keywords

References

  1. T. Toshihiro, "Recent trends of polybutadiene and polyisoprene", J. Soc. Rubber Ind., Japan, 78(2), 42-45 (2005) https://doi.org/10.2324/gomu.78.42
  2. S. Ostad-Movahed, A. Ansarifar, and M. Song, "Using modulated-temperature differential scanning calorimetry to study interphases in blends of styrene-butadiene and polybutadiene rubbers filled with a silanized silica nanofiller", J. Appl. Polym. Sci., 111(3), 1644-1652 (2009) https://doi.org/10.1002/app.29143
  3. A. Thitithammawong, C. Nakason, K. Sahakaro, and J. W. M. Noordermeer, "Multifunctional peroxide as alternative crosslink agents for dynamically vulcanized epoxidized natural rubber/ polypropylene blends", J. Appl. Polym. Sci., 111(2), 819-825 (2009)
  4. P. Prasopnatra, P. Saeoui, and C. Sirisinha, "Rheological properties of recycled chlorinated polyethylene/natural rubber blends vulcanized by sulfur", J. Appl. Polym. Sci., 111(2), 1051-1056 (2009)
  5. T. Kuila, S. K. Srivastava, and A. K. Bhowmick, "Rubber/LDH nanocomposites by solution blending", J. Appl. Polym. Sci., 111(2), 635-641 (2009) https://doi.org/10.1002/app.29117
  6. J. B. van Beilen and Y. Poirier, "Estabilishment of new crops for the production of natural rubber", Trends Biotechnol., 25(11), 522-529 (2007) https://doi.org/10.1016/j.tibtech.2007.08.009
  7. R. Bhatt, D. Shah, K. C. Patel, and U. Tivedi, "PHA-rubber blends: synthesis, characterization and biodegradation", Bioresour. Technol., 99(11), 4615-4620 (2008) https://doi.org/10.1016/j.biortech.2007.06.054
  8. J. T. Sakdapipanich, "Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments", J. Biosci. Bioeng., 103(4), 287-292 (2007) https://doi.org/10.1263/jbb.103.287
  9. N. J. Morrison and M. Porter, "Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization", Rubber Chem. Technol., 57(1), 63-85 (1984) https://doi.org/10.5254/1.3536002
  10. B. Saville and A. A. Watson, "Structural characterization of sulphur-vulcanized rubber networks", Rubber Chem. Technol., 40(1), 100-148 (1967) https://doi.org/10.5254/1.3539039
  11. M. Nasir and G. K. Teh, "The effects of various types of crosslinks on the physical properties of natural rubber", Eur, Polym. J., 24(8), 733-736 (1988) https://doi.org/10.1016/0014-3057(88)90007-9
  12. S. R. Smith and J. L. Koenig, "Solid-state carbon- 13 NMR studies of vulcanized elastomers. IX. TMTD-vulcanized cis-1,4-polybutadiene at 75.5 MHz", Rubber Chem. Technol., 65(1), 176-200 (1992) https://doi.org/10.5254/1.3538598
  13. A. Yoshika, K. Komuro, A. Ueda, H. Watanabe, S. Akita, T. Masuda, and A. Nakajima, "Structure and physical properties of high-vinyl polybutadiene rubbers and their blends", Pure & Appl. Chem., 58(12), 1697-1706 (1986) https://doi.org/10.1351/pac198658121697
  14. A. M. Zaper and K. L. Koenig, "Solid-state $^{13}C$ NMR studied of vulcanized elastomers, 4. Sulfur-vulcanized polybutadiene", Die Makromol. Chemie, 189(6), 1239-1251 (1988) https://doi.org/10.1002/macp.1988.021890602
  15. J. L. Koenig, "Spectroscopic characterization of the molecular structure of elastomeric networks", Rubber Chem. Technol., 73(3), 385-404 (2000) https://doi.org/10.5254/1.3547598
  16. H. Menge, S. Hotopf, and H. Schneider, "Partially deuterated poly(butadiene) Part II. Deuteron NMR investigation of strain-induced segment anisotropy", Polymer, 41(11), 4189-4201 (2000) https://doi.org/10.1016/S0032-3861(99)00633-3
  17. J. Sakadapipanich, T. Kowitteerawut, K. Seiichi, and Y. Tanaka, "Structural characterization of highly cis-1,4-polybutadiene: A comparing study in swollen and solid state using NMR technique", Polym. Bulletin, 46(6), 479-485 (2001) https://doi.org/10.1007/s002890170035
  18. V. M. Litvinov, M. van Duin, and Geleen, "Real-time 1H NMR relaxation study of EPDM vulcanization", KGK Kautschuk Gummi Kunststoffe, 55(9), 460 (2002)
  19. R. Winsters, W. Heinen, M. A. L. Verbruggen, J. Lugtenburg, M. Van Duin, and H. J. M. De Groot, "Solid-state $^{13}C$ NMR study of accelerated- sulfur-vulcanized $^{13}C$-labeled ENB-EPDM", Macromolecule, 35(5), 1958-1966 (2002) https://doi.org/10.1021/ma001716h
  20. S. Kariyo and S. Stapf, "NMR relaxation dispersion of vulcanized natural rubber", Sol. St. Nucl. Magn. Reson., 25(1-3), 64-71 (2004) https://doi.org/10.1016/j.ssnmr.2003.03.011
  21. J. Ukawa, S. Kawahara, and J. Sakai, "Structural characterization of vulcanized natural rubber by latex state $^{13}C$ NMR spectroscopy", J. Polym. Sci. Part B: Polym. Phys., 45(9), 1003-1009 (2007) https://doi.org/10.1002/polb.21076
  22. J. Rault, J. Marchal, P. Judeinstein, and P. A. Albouy, "Chain orientation in natural rubber, Part II: 2H-NMR study", Eur. Phys. J. E, Soft Matter, 21(3), 243-261 (2007)
  23. L. Bateman, ed., "The Chemistry and Physics of Rubber-like Substances", Maclaren, London, 1963
  24. Skinner, T. D., "The CBS-accelerated sulfuration of natural rubber and cis-1,4-polybutadiene", Rubber Chem. Technol., 1971, 45(1), 182-192
  25. R. M. Seyger, R. Hulst, and A. Bantjes, "Vulcanization of Butadiene Rubber by Means of Cyclic Disulfides. 1. A 2D NMR Study on the Cross-Link Structure of a BR Model Compound Vulcanizate", Macromolecule, 1999, 32(22), 7504-7508 https://doi.org/10.1021/ma990594u
  26. R. Hulst, R. M. Seyger, J. P. M. van Duynhoven, L. van der Does, J. W. M. Noordermeer, and A. Bantjes, "Vulcanization of butadiene rubber by means of cyclic disulfides. 2. A 2D solid state HRMAS NMR study on cross-link structures in BR vulcanizates", Macromolecule, 32(22), 7509-7520 (1999) https://doi.org/10.1021/ma990595m
  27. R. Hulst, R. M. Seyger, and A. Bantjes, A., "Vulcanization of butadiene rubber by means of cyclic disulfides. 3. A 2D solid state HRMAS NMR study on accelerated sulfur vulcanizates of BR rubber", Macromolecule, 1999, 32(22), 7521-7529 https://doi.org/10.1021/ma990596e
  28. M. Mori and J. L. Koenig, "Solid-state $^{13}C$NMR and equilibrium-swelling studies of filled, TBBS-accelerated sulfur vulcanization of natural rubber", J. Appl. poly. Sci., 1998, 70(7), 1391-1399 https://doi.org/10.1002/(SICI)1097-4628(19981114)70:7<1391::AID-APP14>3.0.CO;2-3