A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing (Department of Naval Architecture and Marine Systems Engineering, PuKyong National University) ;
  • Bae, Dong-Myung (Department of Naval Architecture and Marine Systems Engineering, PuKyong National University)
  • Published : 2008.06.30

Abstract

The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

Keywords

References

  1. Bathe, K.J. 1966. Finite Element Procedure. Prentice- Hall
  2. Belytschko, T., W.K. Liu and B. Moran. 2000. Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons New YORK
  3. Clough, R. W. and J. Penzien. 1993. Dynamics of structures. McGraw-Hill
  4. Ditlevsen, O. and H.O. Madsen. 1996. Structural Reliability Methods, John Wiley
  5. Falsone, G. and G. Ferro. 2007. An exact solution for the static and dynamic analysis of FE discretized uncertain structures, Comput. Methods Appl. Mech. Engrg., 196, pp.2390-2400 https://doi.org/10.1016/j.cma.2006.12.003
  6. Ghanem, R.G. and P. D. Spanos. 2003. Stochastic Finite Element: A Spectral Approach, REVISED EDTION. Springer-Verlag New York
  7. Hac, K., B.H. Ba and A. Ba. 2007. Nonlinear analysis of rock-fill dams to non-stationary exitation by the stochastic Wilson-\theta$ method, Applied Math. And Comput., 194, pp.333-345 https://doi.org/10.1016/j.amc.2007.04.053
  8. Hisada, T. and H. Noguchi. 1989. Development of a nonlinear stochastic FEM and its application, in: Proceedings of the Fifth International Conference on Structural Safety and Reliability, Australia, pp. 1097-1104
  9. Kleiber, M. and T.D. Hien. 1992. The Stochastic finite element method. Wiley
  10. Liu, P.L. and A.D. Kiureghian. 1988. Reliability of Geometrically Nonlinear Structures, in: P.D. Spanos (Ed.), Probabilistic Methods in Civil Engineering, ASCE, New York, pp.164-167
  11. Liu, W.K., T. Belytschko and A. Mani. 1988. Prandom field finite elements. Int. J. Num. Mrth. Appl. Mech. Eng., 67, pp.27-54
  12. Liu, W.K., T. Belytschko and A. Mani.1986. Probabilistic Finite element methods in nonlinear dynamics, Comput. Methods Appl. Mech. Engng. ,56 ,1, pp. 61-81 https://doi.org/10.1016/0045-7825(86)90136-2
  13. Loannis, D. and K. Zhan. 2006. Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes, Comput. Methods Appl. Mech. Engrg., 195, pp.2231-2251 https://doi.org/10.1016/j.cma.2005.05.004
  14. Shreider, Y.A. 1966. The Monte Carlo Method, Pergamon Press
  15. Vanmarcke, E.H. 1983. Random Fields: Analysis and Synthesis, MIT Press, Cambridge
  16. Yang, Y.B., S.P. Lin and L.J. Leu. 2007. Solution strategy and rigid element for nonlinear analysis of elastically structures base on updated Lagrangian formulation, Engineering Structures ,29, pp. 1189-1200 https://doi.org/10.1016/j.engstruct.2006.08.015
  17. Zhao, L. and Q. Chen. 2000. A stochastic variational formulation for nonlinear dynamic analysis of structure. Comput. Methods Appl. Mech. Engrg., 190, pp. 597-608 https://doi.org/10.1016/S0045-7825(99)00431-4
  18. Zhou, A. and Y. Haldar. 1992. Reliability of geometrically nonlinear PR Frames, J. Engrg. Mech., ASCE , 118, 10, pp. 2148-2155 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2148)