References
- Takamura, C. et al. Iridoids from the green leaves of Eucommia ulmoides. J Nat Prod 70:1312-1316 (2007) https://doi.org/10.1021/np0780046
- Nakamura, T. et al. Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves): 1. The clastogen-suppressing effects of Tochu tea in CHO cells and mice. Mutat Res 388:7-20 (1997) https://doi.org/10.1016/S1383-5718(96)00096-4
- Deyama, T., Nishibe, S. & Nakazawa, Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol Sin 22:1057-1070 (2001)
- Nakasa, T. et al. Effects of Du-zhong leaf extract on plasma and hepatic lipids in rats fed on a high fat plus high cholesterol diet. Nippon Nogeikagaku Kaishi 69: 1491-1498 (1995) https://doi.org/10.1271/nogeikagaku1924.69.1491
- Hsieh, C. L. & Yen, G. C. Antioxidant actions of duzhong (Eucommia ulmoides Oliv.) toward oxidative damage in biomolecules. Life Sci 66:1387-1400 (2000) https://doi.org/10.1016/S0024-3205(00)00450-1
- Lee, M. K. et al. Hypoglycemic effect of Du-zhong (Eucommia ulmoides Oliv.) leaves in streptozotocininduced diabetic rats. Diabetes Res Clin Pract 67:22-28 (2005) https://doi.org/10.1016/j.diabres.2004.05.013
- Park, S. A. et al. Hypoglycemic and hypolipidemic action of Du-zhong (Eucommia ulmoides Oliver) leaves water extract in C57BL/KsJ-db/db mice. J Ethnopharmacol 107:412-417 (2006) https://doi.org/10.1016/j.jep.2006.03.034
- Watson, R. T., Kanzaki, M. & Pessin, J. E. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25:177-204 (2004) https://doi.org/10.1210/er.2003-0011
- Nesher, R., Karl, I. E. & Kipnis, D. M. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 249: C226-232 (1985) https://doi.org/10.1152/ajpcell.1985.249.3.C226
- Azevedo, J. L. et al. Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 44:695-698 (1995) https://doi.org/10.2337/diabetes.44.6.695
- Hayashi, T. et al. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369-1373 (1998) https://doi.org/10.2337/diabetes.47.8.1369
- Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J. & Winder, W. W. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667-1671 (1999) https://doi.org/10.2337/diabetes.48.8.1667
- Ceddia, R. B. et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48:132-139 (2005) https://doi.org/10.1007/s00125-004-1609-y
- Salt, I. P., Connell, J. M. & Gould, G. W. 5-aminoimidazole- 4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3- L1 adipocytes. Diabetes 49:1649-1656 (2000) https://doi.org/10.2337/diabetes.49.10.1649
- DeFronzo, R. A. et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000-1007 (1981) https://doi.org/10.2337/diab.30.12.1000
- Okada, T. et al. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 269:3568-3573 (1994)
- Wang, Q. et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 19:4008-4018 (1999) https://doi.org/10.1128/MCB.19.6.4008
- Czech, M. P. & Corvera, S. Signaling mechanisms that regulate glucose transport. J Biol Chem 274:1865-1868 (1999) https://doi.org/10.1074/jbc.274.4.1865
- Zou, M. H. et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279:43940-43951 (2004) https://doi.org/10.1074/jbc.M404421200
- Xi, X., Han, J. & Zhang, J. Z. Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem 276:41029-41034 (2001) https://doi.org/10.1074/jbc.M102824200
- Konrad, D. et al. The antihyperglycemic drug alphalipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes 50:1464-1471 (2001) https://doi.org/10.2337/diabetes.50.6.1464
- Ofir, M., Hochhauser, E., Vidne, B. A., Freimark, D. & Arad, M. AMP-activated protein kinase: how a mistake in energy gauge causes glycogen storage. Harefuah 146:770-775 (2007)
- Eichhorn, J., Kayali, A. G., Austin, D. A. & Webster, N. J. Insulin activates phospholipase C-gamma1 via a PI-3 kinase dependent mechanism in 3T3-L1 adipocytes. Biochem Biophys Res Commun 282:615-620 (2001) https://doi.org/10.1006/bbrc.2001.4616
- Choi, Y. K. et al. Activation of the intrinsic mitochondrial apoptotic pathway in swine influenza virusmediated cell death. Exp Mol Med 38:11-17 (2006) https://doi.org/10.1038/emm.2006.2