DOI QR코드

DOI QR Code

Proteomic analysis of heat-stable proteins in Escherichia coli

  • Kwon, Soon-Bok (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Jung, Yun-A (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Lim, Dong-Bin (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2007.09.23
  • Accepted : 2007.12.06
  • Published : 2008.02.29

Abstract

Some proteins of E. coli are stable at temperatures significantly higher than $49^{\circ}C$, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.

Keywords

References

  1. Marr, A.G. (1991) Growth rate of Escherichia coli. Microbiol. Mol. Biol. Rev. 55, 316-333
  2. Ingram, J. L. (1958) Growth of psychrophilic bacteria. J. Bacteriol. 76, 75-80
  3. Feller, G. and Gerday , C. (2003) Psychrophilic enzymes: Hot topics in cold adaptation. Nature Rev. Microbiol. 1, 200-208 https://doi.org/10.1038/nrmicro773
  4. Rosen, B. P. and Vasington, F. D. (1971) Purification and characterization of a histidine-binding protein from Salmonella typhimurium LT-2 and its relationship to the histidine permease system. J. Biol. Chem. 246, 5351-5360
  5. Josse, J. (1966) Constitutive inorganic pyrophosphatase of Escherichia coli. I. Purification and catalytical properties. J. Biol. Chem. 241, 1938-1947
  6. Hesterkamp, T., Hauser, S., Lutcke, H. and Bukau, B. (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 93, 4437-4441 https://doi.org/10.1073/pnas.93.9.4437
  7. Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. and Hartl, F. U. (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147-154 https://doi.org/10.1038/45977
  8. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. and Sigler, P. B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578-586 https://doi.org/10.1038/371578a0
  9. Chuang, M. H., Wu, M. S., Lo, W. L., Lin, J. T., Wong, C. H. and Chiou, S. H. (2006) The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. (USA). 103, 2552-2557 https://doi.org/10.1073/pnas.0510770103
  10. Mortl, S., Fischer, M., Richter, G., Tack, J., Weinkauf, S. and Bacher, A. (1966) Biosynthesis of Riboflavin: Lumazine synthase of Escherichia coli. J. Biol. Chem. 272, 33201-33207
  11. Oka, T., Nishimoto, Y., Sasagawa, T., Kanouchi, H., Kawasaki, Y. and Natori, Y. (1999) Production of functional rat liver PSP protein in Escherichia coli. Cell. Mol. Life Sci. 55, 131-134 https://doi.org/10.1007/s000180050277
  12. Morita, T., Kawamoto, H., Mizota, T., Inada, T. and Aiba, H. (2004) Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol. Microbiol. 54, 1063-1075 https://doi.org/10.1111/j.1365-2958.2004.04329.x
  13. Entelis, N., Brandina, L., Kamenski, P., Krasheninnikov, I. A., Martin, R. P. and Tarassov, I. (2006) A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev. 20, 1609-1620 https://doi.org/10.1101/gad.385706
  14. Park C., Zhou, S., Gilmore, J. and Marqusee, S. (2007) Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J. Mol. Biol. 368, 1426-1437 https://doi.org/10.1016/j.jmb.2007.02.091
  15. Jeong, M. A. and Lim, D. (2004) A proteomic approach to study msDNA function in Escherichia coli. J. of Microbiol. 42, 200-204
  16. Lee, K., Bae, D. and Lim, D. (2002) Evaluation of parameters in peptide mass fingerprinting for protein identification by MALDI-TOF mass spectrometry. Mol. Cells. 13, 175-184

Cited by

  1. Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function vol.42, pp.12, 2009, https://doi.org/10.5483/BMBRep.2009.42.12.812
  2. Heat shock protein DnaK — Substrate of actin-specific bacterial protease ECP32 vol.76, pp.4, 2011, https://doi.org/10.1134/S0006297911040080
  3. Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity vol.3, pp.1, 2013, https://doi.org/10.1038/srep02347
  4. Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope ofEscherichia coli vol.10, pp.4, 2010, https://doi.org/10.1002/pmic.200900461
  5. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles vol.16, pp.7, 2017, https://doi.org/10.1021/acs.jproteome.6b01045
  6. Improving gel-based proteome analysis of soluble protein extracts by heat prefractionation vol.12, pp.7, 2012, https://doi.org/10.1002/pmic.201100475
  7. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries vol.6, pp.1, 2016, https://doi.org/10.1038/srep21151
  8. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes vol.124, pp.3, 2017, https://doi.org/10.1016/j.jbiosc.2017.04.013
  9. METHODS: An alternate method for purification of recombinantTaqDNA polymerase using an aqueous two-phase system vol.6, pp.5, 2010, https://doi.org/10.1089/ind.2010.6.295
  10. Large-scale identification of membrane proteins with properties favorable for crystallization vol.24, pp.11, 2015, https://doi.org/10.1002/pro.2766
  11. A role for the Parkinson’s disease protein DJ-1 as a chaperone and antioxidant in the anhydrobiotic nematode Panagrolaimus superbus vol.20, pp.1, 2015, https://doi.org/10.1007/s12192-014-0531-6