DOI QR코드

DOI QR Code

AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana

  • Shen, Huaishun (State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University) ;
  • Cao, Kaiming (State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University) ;
  • Wang, Xiping (State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University)
  • Received : 2007.08.06
  • Accepted : 2007.10.16
  • Published : 2008.02.29

Abstract

AtbZIP16 and AtbZIP68 are two putative G group bZIP transcription factors in Arabidopsis thaliana, the other three members of G group bZIPs are GBF1-3 which can bind G-box. Members of G group have conservative protein structure: highly homological basic region and a proline-rich domain in the N-terminal region. Here, we report that AtbZIP16 and AtbZIP68 could bind cis elements with ACGT core, such as G-box, Hex, C-box and As-1, but with different binding affinities which from high to low were G-box > Hex > C-box > As-1; AtbZIP16 and AtbZIP68 could form homodimer and form heterodimer with other members of G group; N-terminal proline rich domain of AtbZIP16 had transactivation activity in yeast cells while that of AtbZIP68 did not; AtbZIP16 and AtbZIP68 GFP fusion protein localized in the nucleus of onion epidermal cells. These results indicated that AtbZIP16 and AtbZIP68 were two new members of GBFs. In Arabidopsis, AtbZIP16 and AtbZIP68 may also participate in light-responsive process in which GBF1-3 are involved.

Keywords

References

  1. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K. and Yu, G.-L. (2000) Arabidopsis transcription factors: genomewide comparative analysis among eukaryotes. Science 290, 2105-2110 https://doi.org/10.1126/science.290.5499.2105
  2. Chern, M. S., Bobb, A. J. and Bustos, M. M. (1996) The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Cell 8, 305-321 https://doi.org/10.1105/tpc.8.2.305
  3. Chuang, C. F., Running, M. P., Williams, R. W. and Meyerowitz, E. M. (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13, 334-344 https://doi.org/10.1101/gad.13.3.334
  4. Hardtke, C. S., Gohda, K., Osterlund, M. T., Oyama, T., Okada, K. and Deng, X. W. (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J. 19, 4997-5006 https://doi.org/10.1093/emboj/19.18.4997
  5. Kusano, T., Berberich, T., Harada, M., Suzuki, N. and Sugawara, K. (1995) A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol. Genet. Genomics 248, 507-517 https://doi.org/10.1007/BF02423445
  6. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U.S.A. 97, 11632-11637 https://doi.org/10.1073/pnas.190309197
  7. Zhou, J. M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J. Klessig, D. F. (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact. 13, 191-202 https://doi.org/10.1094/MPMI.2000.13.2.191
  8. Ellenberger, T., Brandl, C., Struhl, K. and Harrison, S. (1994) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223-1237 https://doi.org/10.1016/S0092-8674(05)80070-4
  9. Izawa, T., Foster, R. and Chua, N. H. (1993) Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230, 1131-1144 https://doi.org/10.1006/jmbi.1993.1230
  10. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente- Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111 https://doi.org/10.1016/S1360-1385(01)02223-3
  11. Schindler, U., Menkens, A. E., Beckmann, H., Ecker, J. R. and Cashmore, A. R. (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J. 11, 1261-1273
  12. Siberil, Y., Doireau, P. and Gantet, P. (2001) Plant bZIP G-box binding factors. Eur. J. Biochem. 268, 5655-5666 https://doi.org/10.1046/j.0014-2956.2001.02552.x
  13. Menkens, A. E. and Cashmore, A. R. (1994) Isolation and characterization of a fourth Arabidopsis thaliana G-boxbinding factor, which has similarity to Fos oncoprotein. Proc. Natl. Acad. Sci. U.S.A. 91, 2522-2526 https://doi.org/10.1073/pnas.91.7.2522
  14. Weisshaar, B., Armstrong, G. A., Block, A., da Costa e Silvia, O., Hahlbrock, K. (1991) Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J. 10, 1777-1786
  15. Armstrong, G. A., Weisshaar, B. and Hahlbrock, K. (1992) Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4, 525-537 https://doi.org/10.1105/tpc.4.5.525
  16. Kircher, S., Ledger, S., Hayashi, H., Weisshaar, B., Schafer, E. and Frohnmeyer, H. (1998) CPRF4, a novel plant bZIP protein of the CPRF family: comparative analysis of light dependent expression, post-transcriptional regulation, nuclear import and heterodimerisation. Mol. Genet. Genomics 257, 595-605 https://doi.org/10.1007/s004380050687
  17. Terzaghi, W. B., Bertekap, R. L. and Cashmore, A. R. (1997) Intracellular localization of GBF proteins and blue lightinduced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant J. 11, 967-982 https://doi.org/10.1046/j.1365-313X.1997.11050967.x
  18. Wellmer, F., Schafer, E. and Harter, K. (2001) The DNA binding properties of the parsley bZIP transcription factor CPRF4a are regulated by light. J. Biol. Chem. 276, 6274-6279 https://doi.org/10.1074/jbc.M007971200
  19. Oyama, T., Shimura, Y. and Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus- induced development of root and hypocotyl. Genes Dev. 11, 2983-2995 https://doi.org/10.1101/gad.11.22.2983
  20. Mallappa, C., Yadav, V., Negi, P. and Chattopadhyay, S. (2006) A basic leucine zipper transcription factor, G-boxbinding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J. Biol. Chem. 31, 22190-22199
  21. Gong, W., Shen, Y. P., Ma, L. G., Pan, Y., Du, Y. L., Wang, D. H., Yang, J. Y., Hu, L. D., Liu, X. F., Dong, C. X., Ma, L., Chen, Y. H., Yang, X. Y., Gao, Y., Zhu, D., Tan, X., Mu, J. Y., Zhang, D. B., Liu, Y. L., Dinesh-Kumar, S. P., Li, Y., Wang, X. P., Gu, H.-Y., Qu, L. J., Bai, S. N., Lu, Y. T., Li, J. Y., Zhao, J. D., Zuo, J., Huang, H., Deng, X.W. and Zhu, Y. X. (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol. 135, 773-782 https://doi.org/10.1104/pp.104.042176
  22. Varagona, M. J., Schmidt, R. J. and Raikhel, N. V. (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4, 1213-1227 https://doi.org/10.1105/tpc.4.10.1213
  23. Riechmann, J. L., Krizek, B. A. and Meyerowitz, E. M. (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. U.S.A. 93, 4793-4798 https://doi.org/10.1073/pnas.93.10.4793

Cited by

  1. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies vol.5, 2014, https://doi.org/10.3389/fpls.2014.00169
  2. Redox-regulated transcription in plants: Emerging concepts vol.4, pp.3, 2017, https://doi.org/10.3934/molsci.2017.3.301
  3. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen vol.70, pp.5, 2009, https://doi.org/10.1007/s11103-009-9493-y
  4. GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development vol.252, pp.3, 2015, https://doi.org/10.1007/s00709-014-0726-9
  5. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte vol.30, pp.1, 2017, https://doi.org/10.1007/s00497-016-0295-5
  6. Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors inArabidopsis vol.287, pp.33, 2012, https://doi.org/10.1074/jbc.M112.361394
  7. Genome-Wide Identification of Sorghum bicolor Laccases Reveals Potential Targets for Lignin Modification vol.8, 2017, https://doi.org/10.3389/fpls.2017.00714
  8. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method vol.14, pp.6, 2014, https://doi.org/10.1002/pmic.201300307
  9. W-box and G-box elements play important roles in early senescence of rice flag leaf vol.6, pp.1, 2016, https://doi.org/10.1038/srep20881
  10. Gene Expression Regulation in Photomorphogenesis from the Perspective of the Central Dogma vol.65, pp.1, 2014, https://doi.org/10.1146/annurev-arplant-050213-040337
  11. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses vol.125, pp.3, 2012, https://doi.org/10.1007/s10265-011-0448-4
  12. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139884