Evaluation of Adsorption Characteristics of the Media for Biofilter Design

바이오필터설계를 위한 바이오필터 담체의 흡착 특성

  • Lee, Eun-Ju (Deptartment of Chemical Engineering, Kyungpook National University) ;
  • Lim, Kwang-Hee (Deptartment of Chemical Engineering, Daegu University)
  • Received : 2008.06.03
  • Accepted : 2008.06.19
  • Published : 2008.10.31

Abstract

Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

바이오필터 모델로서 프로세스럼핑 모델(Lim의 모델)을 넓은 농도범위의 친수성 VOC의 경우에도 유효하도록 robust하게 개선하기 위하여, 수막으로 둘러싸였다고 가정한 멸균된 입상 활성탄, compost 및 동부피의 입상 활성탄/compost 담체 각각에 대해서 모델적용에 필요한 Freundlich 등온흡착관계식의 흡착상수들을 구하고 상호 비교하였다. 당 연구에서는 각각 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 및 1.0 ml의 에탄올을 멸균된 각각의 젖은 담체에 첨가하여서 바이오필터 운전조건과 같은 $30^{\circ}C$에서 흡착이 정상상태에 도달한 후에 각각의 담체에 대한 흡착량을 산출하는 에탄올 등온흡착평형 실험을 통하여, 각 담체 내부의 세공에 응축된 물에 용해된 에탄올농도와 등온흡착평형을 이루는 에탄올의 평형 흡착량을 모사하는 Freundrich 등온흡착모델의 파라미터인 흡착능 상수(K) 및 흡착지수(1/n) 값을 멸균된 입상 활성탄, compost 및 동부피의 입상 활성탄/compost 담체에 대하여 각각 0.7566과 $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$, 0.8827과 $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$ 및 0.5688과 $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$과 같이 구축하였다. 이와 같은 에탄올 등온흡착평형 실험에서 구해진 흡착능 상수 및 흡착지수를 포함하는 Freundlich 흡착상수는, 바이오필터의 바이오막으로 덮여진 바이오필터담체의 흡착특성에 적용할 수 있었다. 당 연구에서의 에탄올의 공기/물 분배계수와 Delhomenie 등의 젖은 compost담체에 대한 톨루엔 흡착실험에서의 톨루엔의 공기/물 분배계수의, 비의 크기 정도는 compost를 담체로 하는 양쪽의 연구에서 산출된 흡착량 비의 크기 정도와 거의 일치하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Hirai, M., Ohtake, M. and Shoda, M., "Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters," J. Ferment. Bioeng. 70, 334-339(1990) https://doi.org/10.1016/0922-338X(90)90145-M
  2. Ottengraf, S. P. P., Exhaust Gas Purification, Biotechnology (H.J., Rehm, G. Reed, eds) Vol. 8, pp.426-452, VCH, Weinheim, Germany(1986)
  3. Shareefdeen, Z., Baltzis, B. C., Oh, Y. S. and Bartha, R., "Biofiltration of Methanol Vapor," Biotechnol. Bioeng., 41, 512-524(1993) https://doi.org/10.1002/bit.260410503
  4. Deshusses, M. A., Hamer, G., and Dunn, I. J., "Behaviour of Biofilters for Waste Air Biotreatment. 1. Dynamic Model Develpement," Environ. Sci. Technol., 29, 1048-1058(1995) https://doi.org/10.1021/es00004a027
  5. Speitel, G. E. and Mclay, Jr., D. S., "Biofilm Reactors for Treatment of Gas Streams Containing Chlorinated Solvents," J. Environ. Eng., 119, 658-678(1993) https://doi.org/10.1061/(ASCE)0733-9372(1993)119:4(658)
  6. Liu, P. K. T., Gregg, R. L. and Sabol, H. K., "Engineered Biofilter for Removing Organic Contaminants in Air," Air & Waste, 44, 209-303(1994)
  7. Deshusses, M. A. and Dunn, I. J., Modelling Experiments on the Kinetics of Mixed-solvent Removal from Waste Gas in a Biofilter, Proceedings of the 6th European Congress on Biotechnology (L. Alberghina, L. Frontali and P. Sensi eds.), pp.1191-1198, Elsevier Science B. V.(1994)
  8. Deshusses, M. A. and Hamer, G., "The Removal of Volatile Ketone Mixtures from Air in Biofilters," Bioprocess Engineering, 9, 141-146(1993) https://doi.org/10.1007/BF00389921
  9. Hodge, D. S. and Devinny, J. S., "Biofilter Treatment on Ethanol Vapors," Environmental Process, 13(3), 167-173(1994)
  10. Tang, B., Hwang, S. J. and Hwang, S., "Dynamics of Toluene Degradation in Biofilters," Hazardous Waste & Hazardous Materials, 12(3), 207-219(1995) https://doi.org/10.1089/hwm.1995.12.207
  11. Eckhart, A., Proceedings of Biological Treatment of Industrial Waste Gases, Dechema, Heidelberg, Germany, Mar. 24-26, 2pp.(1987)
  12. Buchner, R., "Auswirkungen Verschiedener Betriebszustande in der Biologischen Abluftreinigung am Beispiel von Biofiltern," Ph. D. Thesis, T. U. Wien, Austria(1989)
  13. Leson, G. and Winer, A. M., "Biofiltration: An Innovative Air Pollution Control Technology for VOC Emissions," J. Air & Waste Manage. Assoc., 41, 1045-1054(1991) https://doi.org/10.1080/10473289.1991.10466898
  14. Sorial, G. A., Smith, F. L., Suidan, M. T. and Biswas, P., "Evaluation of Trickle Bed Biofilter Media for Toluene Removal," Journal of the Air & Waste Management Association, 45, 801-810(1995) https://doi.org/10.1080/10473289.1995.10467410
  15. Hodge, D. S. and Devinny, J. S., "Modeling Removal of Air Contaminants by Biofiltration," Journal of Environmental Engineering, 121(1), 21-32(1995) https://doi.org/10.1061/(ASCE)0733-9372(1995)121:1(21)
  16. Deshusses, M. A., "Transient Behaviour of Biofilters: Start-up, Carbon Balances and Interactions Between Pollutants," Journal of Environmental Engineering, 123(6), 563-568(1997) https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(563)
  17. Deshusses, M. A., Hamer, G., and Dunn, I. J., "Transient State Behaviour of Biofilter Removing Mixtures of Vapors of MEK and MIBK From Air," Biotechnol. Bioengrg, 49(5), 587-598(1996) https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<587::AID-BIT12>3.0.CO;2-7
  18. Zarook, S. M. and Baltzis, B. C., "Biofiltration of Toluene Vapor Under Steady State and Transient Conditions: Theory and Experimental Results," Chemical Engineering Science, 49, 4347-4360(1994) https://doi.org/10.1016/S0009-2509(05)80026-0
  19. Zarook, S. M., Shaikh, A. A. and Ansar, Z., "Development, Experimental Validation and Dynamic Analysis of A General Transient Biofilter Model," Chemical Engineering Science, 52(5), 759-773(1997) https://doi.org/10.1016/S0009-2509(96)00428-9
  20. Wani, A. H., Branion, R. M. R. and Lau, A. K., "Biofiltration: A Promising and Cost Effective Control Technology for Odors, VOCs and Air Toxics," J. Environ. Sci. Health, A32, 2027-2055(1997)
  21. Lim, K. H., "Waste Air Treatment with a Biofilter: for the Case of Excess Adsorption Capacity," Journal of Chemical Engineering of Japan, 34(6), 766-775(2001) https://doi.org/10.1252/jcej.34.766
  22. Lim, K. H., "Waste Air Treatment with Biofilter: for the Case of Adsorption Capacity Limited," Journal of Chemical Engineering of Japan, 34(6), 776-789(2001) https://doi.org/10.1252/jcej.34.776
  23. Lim, K. H. and Lee E. J., "Biofilter Modeling for Waste Air Treatment: Comparisons of Inherent Characteristics of Biofilter Models," Korean J. Chem. Eng., 20(2), 315-327(2003) https://doi.org/10.1007/BF02697247
  24. Lith, "Evaluating Design Options for Biofilters," J. Air & Waste Magmt. Assoc., 47, 37-48(1997) https://doi.org/10.1080/10473289.1997.10464410
  25. Auria, R., Aycagner, A.-C. and Devinny, J. S., "Influence of Water Content On Degradation Rates for Ethanol in Biofiltration," J. Air & Waste Mgmt. Assoc., 48, 65-70(1997)
  26. Amanullah, Md., Farooq, S. and Viswanathan, S., "Modeling and Simulation of Biofilter," Ind. Eng. Chem. Res., 37(7), 2765-2774(1999)
  27. Jorio, H, K., Kiared, R., Brezenski, A., Leroux, G. Viel and Heitz, M., "Treatment of Air Polluted with High Concentrations of Toluene and Xylene in a Pilot-scale Biofilter," J. Chem. Technol. Biotechnol., 73, 183-196(1998) https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<183::AID-JCTB943>3.0.CO;2-7
  28. Lee, T. J., Kwon, O. Y. and An, S. J., "Removal of Odor Causing Compounds Using Adsorption of Crushed Refused-tire and Phenol Oxidizing Bacteria," Cryptococcus Terreus A, J. KSEE, 22, 1601-1607(2000)
  29. Lim, K. H. and Park, S. W., "The Treatment of Waste-air Con-Taining Mixed Solvent Using a Biofilter: 1. Transient Behavior of Biofilter to Reat Waste-air Containing Ethanol," Korean J. Chem. Eng., 21(6), 1161-1167(2004) https://doi.org/10.1007/BF02719488
  30. Lim, K. H., Park, S. W., Lee, E. J. and Hong, S. H., "Treatment of Mixed Solvent Vapors with Hybrid System Composed of Biofilter and Photo-catalytic Reactor," Korean J. Chem. Eng., 22(1), 70-79(2005) https://doi.org/10.1007/BF02701465
  31. Lim, K. H. and Park, S. W., "The Treatment of Waste-air Containing Mixed Solvent Using A Biofilter: 2. Treatment of Wasteair Containingf Ethanol and Toluene in a Biofilter," Korean J. Chem. Eng., 22(2), 228-233(2005) https://doi.org/10.1007/BF02701489
  32. Islander, R. I., Devinny, J. S., Mansfield, F., Postyn, A. and Shin, H., J. Environ. Eng. 117, 751(1990)
  33. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., "Biofiltration of High Concentration of Hydrogen Sulfide Using Thiobacillus Thioparus," Process Biochemistry, 00, 1(2003)
  34. Cho, K.-S., Ryu, H. W. and Lee, N.Y., "Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thioxidants," Journal of Bioscience and Bioengineering, 90, 25(2000) https://doi.org/10.1016/S1389-1723(00)80029-8
  35. Wani, A. H., Branion, M. R. and Lau, A. K., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance," Journal of Hazardous Materials, 60, 287(1998) https://doi.org/10.1016/S0304-3894(98)00154-X
  36. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biodegradation of Hydrogen Sulfide by a Laboratory-scale Immobilized Pseudomonas putida CH11 Biofilter," Biotechnology Progress, 12, 773(1996a) https://doi.org/10.1021/bp960058a
  37. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Operation Optimization of Thiobacillus thioparus CH11 in a Biofilter for Hydrogen Sulfide Removal," Journal of Biotechnology, 52, 31 (1996b) https://doi.org/10.1016/S0168-1656(96)01622-7
  38. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biological Elimination of $H_2S$ and $NH_3$ from Wastegases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043(2001) https://doi.org/10.1016/S0045-6535(00)00211-3
  39. Caputo, D., Iucolano, F., Pepe, F. and Colella, C., "Modeling of Water and Ethanol Adsorption Data on a Commercial Zeoliterich Tuff and Prediction of the Relevant Binary Isotherms," Microporous and Mesoporous Materials, 105, 260-267(2007) https://doi.org/10.1016/j.micromeso.2007.04.018
  40. El-Sharkway, I. I., Saha, B. B., Koyoma, S., He, J., Ng, K. C. and Yap, C., "Experimental Investigation on Activated Carbonethanol Pair for Solar Powered Adsorption Cooling Applications," Refrigeration, xxx, 1-7(2008)
  41. Kim, B. K., Yang, B. H. and Ryu, S. K., "Propylamine Adsorption Characteristics of Surface-treated Activated Carbon Fibers with Nitric Acid and Sulfuric Acid," Korean Chem. Eng. Res., 42, 551-557(2004)
  42. Woo, K. J., Kim, S. D. and Lee, S. H., "Adsorption Chracteristics of Multi-component VOCs Including Poorly Adsorbable Chemicals on Activated Carbonaceous Adsorbents," Korean Chem. Eng. Res., 45, 277-285(2007)
  43. Son, M. S., Kim, S. D., Woo, K. J., Park, H., Seo, M., Lee, S. and Ryu, S. K., "Adsorption Chracteristics of Three Components Volatile Organic Compounds on Activated Carbonaceous Adsorbents," Korean Chem. Eng. Res., 44, 669-675(2006)
  44. Jeong, B. M., Kang, S. H., Choi, H. W., Lee, C. H., Lee, B. K. and Choi, D. K., "Pure Binary Mixture Gases Adsorption Equilibria of Hydrogen/methane/ethylene on Activated Carbon," Korean Chem. Eng. Res., 43, 371-379(2005)
  45. Kim, S. J., Shim, W. G., Kim, T. Y., Moon, H., Kim, S. J. and Cho, S. Y., "Adsorption Equilibrium Characteristics of 2,4-Dichlorophenoxyacetic Acid and 2,4-dinitrophenol on Granular Activated Carbons," Korean J. Chem. Eng., 19, 967-977(2002) https://doi.org/10.1007/BF02707219
  46. Delhomenie, M-.C., Bibeau, L. and Heitz, M., "A Study of the Impact Size and Adsorption Phenomena in a Compost-based Biological Filter," Chemical Engineering Science, 57, 4999-5010(2002) https://doi.org/10.1016/S0009-2509(02)00397-4
  47. Ruthven, D. M., Princples of Adsorption and Adsorption Process, Wiley, New York, NY(1984)
  48. Tsui, L. and Roy, W. R., "Effect of Compost Age and Composition on the Atrazine Removal from Solution," Journal of hazardous materials, B139, 79-85(2007)
  49. Mohseni, M. and Allen, D. G., "Biofiltration of Mixtures of Hydrophilic and Hydrophobic Volatilc Organic Compounds," Chemical Engineering Science, 55, 1545-1558(2000) https://doi.org/10.1016/S0009-2509(99)00420-0
  50. Staudinger, J. and Roberts, P. V., "A Critical Compilation of Henry's Law Constant Temperature Dependence Relations for Organic Compounds in Dilute Aqueous Solutions," Chemosphere, 44, 561-576(2001) https://doi.org/10.1016/S0045-6535(00)00505-1
  51. Gorgenyi, M., Dewulf, J. and Van Langenhove, H., "Temperature Dependence of Henry's Law Constant in An Extended Temperature Range," Chemosphere, 48, 757-762(2002) https://doi.org/10.1016/S0045-6535(02)00131-5