Hydrogen Production for PEMFC Application in Plasma Reforming System

PEMFC용 플라즈마 개질 시스템의 수소 생산

  • Yang, Yoon Cheol (Department of Environmental Engineering, BK21 Team for Hydrogen Production, Chosun University) ;
  • Chun, Young Nam (Department of Environmental Engineering, BK21 Team for Hydrogen Production, Chosun University)
  • 양윤철 (조선대학교 환경공학과 BK21 바이오가스 기반 수소생산 사업팀) ;
  • 전영남 (조선대학교 환경공학과 BK21 바이오가스 기반 수소생산 사업팀)
  • Received : 2008.04.02
  • Accepted : 2008.06.28
  • Published : 2008.10.31

Abstract

The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

이 논문의 목적은 PEMFC 작동을 위한 플라즈마 개질 시스템의 최적 조건을 연구한 것이다. 플라즈마 개질 반응기는 니켈 촉매 반응기와 동시에 사용하여 수소 생성을 증대하였다. 또한 수성가스 전환 반응기 및 선택적 산화 반응기는 연료전지의 촉매 피독에 영향을 주는 일산화탄소의 농도를 10 ppm 이하로 줄이기 위하여 제작되었다. 플라즈마 개질기에서 최대 수소생산 조건은 S/C 비 3.2, 메탄 2.0 L/min, 촉매반응기 온도는 $700{\pm}5^{\circ}C$ 그리고 입력전력 900 W이다. 이때의 합성가스의 농도는 $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%, $CH_4$ 1.8% 이다. 수소 수율, 수소 선택도 그리고 메탄 전환율는 각각 56.8%, 38.1%, 92.2%이다. 에너지 효율과 에너지 요구량은 37.0%, 183.6 kJ/mol 이다. 추가적으로 $CO_2/CH_4$ 비 실험을 진행하였다. 또한 수성가스 전환 반응기는 플라즈마 개질 반응기의 최적조건으로 실험을 진행하였으며, 출구 농도는 $H_2$ 68.0%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1% 이다. 이때의 선택적 산화 반응기의 실험결과는 $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%를 나타냈다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Chin, S. Y., Alexeev, O. S. and Amiridis, M. D., "Preferential Oxidation of CO Under Excess $H_2$ Conditions over Ru Catalysts," Applied Catalysis A : General, 286, 157-166(2005) https://doi.org/10.1016/j.apcata.2005.02.031
  2. Srinivas, S., Dhingra, A., Im, H. and Gulari, E., "A Scalable Silicon Microreactor for Preferential CO Oxidation : Performance Comparison with a Tubular Packed-bed Microreactor," Applied Catalysis A General, 274, 285-293(2004) https://doi.org/10.1016/j.apcata.2004.07.012
  3. Yoon, W. L., Park, J. W., Rhee, Y. W., Han, M. W., Jeong, J. H., Park, J. S., Jung, H., Lee, H. T. and Kim, C. S., "Operating Characteristics of Integrated NG Reformer System for 5 kW Class PEM Fuel Cell," HWAHAK KONGHAK, 41(3), 389-396(2003)
  4. Jhalani, A. and Schmidt, L. D., "Preferential CO oxidation in the Presence of $H_2$, $H_2O$, and $CO_2$ at Short Contact-times," Catalysis Letters, 104(3-4), 103-110(2005) https://doi.org/10.1007/s10562-005-7937-9
  5. Nishimoto, H. A., Nakagawa, K., Ikenaga, N. A., Mikka, N. G., Ando, T. and Suzuki, T., "Partial Oxidation of Methane to Synthesis Gas over Oxidized Diamond Catalysts," Applied Catalysis A : General, 264, 65-72(2004) https://doi.org/10.1016/j.apcata.2003.12.029
  6. Futamura, S., Kabashima, H. and Einaga, E., "Steam Reforming of Aliphatic Hydrocarbons With Nonthermal Plasma," IEEE Transactions on Industry Applications, 40(6), 1476-1481(2004) https://doi.org/10.1109/TIA.2004.836307
  7. Lee, D. H., Kim, K. T., Cha, M. S. and Song, Y. H., "Optimization Scheme of a Rotating Gliding Arc Reactor for Partial Oxidation of Methane," Proceedings of the Combustion Institute, 31, 3343-3351(2007)
  8. Petitpas, G., Rollier, J. D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R. and Fulcheri, L., "A Comparative Study of Nonthermal Plasma Assisted Reforming Technologies," International Journal of Hydrogen Energy, 32, 2848-2867(2007) https://doi.org/10.1016/j.ijhydene.2007.03.026
  9. Moon, D. J., sreekumar, K., Lee, S. D., Lee, B. G. and Kim, H. S., "Studies on Gasoline Fuel Processor System for Fuel-cell Powered Vehicles Application," Applied Catalysis A : General, 215, 1-9(2001) https://doi.org/10.1016/S0926-860X(01)00526-9
  10. Son, J. E., "Hydrogen & Fuel Cell Technology," Korean Chem. Eng. Res., 42(1), 1-9(2004)