Fire Resistance of Concrete-Filled Circular Steel Tube Columns under Central Axial Loads

일정 축력을 받는 콘크리트충전 원형 강관기둥의 내화성능 평가

  • 박수희 (서울시립대학교 건축공학과) ;
  • 송경철 (서울시립대학교 건축공학과) ;
  • 류재용 (서울시립대학교 건축공학과) ;
  • 정경수 (포항산업과학연구원 강구조연구소) ;
  • 최성모 (서울시립대학교 건축공학과)
  • Received : 2008.07.17
  • Accepted : 2008.10.10
  • Published : 2008.10.10

Abstract

In this research, the fire resistance of Concrete-Filled Circular Steel Tube Columns (CFT) was evaluated by numerical analysis. As the materials of CFT columns, the steel of SPSR 400 grade and the concrete of 27.5MPa, 37.8MPa strengths were used. Significant parameters,such as concrete strength, axial load, and cross-sectional dimensions were determined. To verify the accuracy of the numerical analysis,the analysis results were compared with the former experiment results. The effect of the fire resistance time, axial load ratio, cross-sectional dimensions and concrete strength was evaluated by comparison with the fire resistance of the square CFT columns. This research showed that the structural behavior and fire resistance from the findings of numerical parametric studies showed a similarity to that of the experimental results. Therefore, this numerical analysis is reasonable in estimating the fire resistance of the circular CFT column.

본 연구에서는 콘크리트충전 원형강관(원형 CFT)기둥의 내화성능을 평가하기 위하여 수치해석을 수행하였다. 강관은 SPSR 400 강재를 사용하였으며 강관 내에는 27.5MPa와 37.8MPa 강도의 콘크리트를 사용하였다. 콘크리트 강도, 작용 축력, 단면 직경을 변수로 설정하였다. 수치해석의 정확성을 검증하기 위하여, 기존의 각국 내화성능설계식들에 의한 계산 결과값과 비교 평가 하였다. 또한, 기존의 실대 원형 CFT기둥의 내화성능 평가 실험 결과와 함께 비교 분석하여 수치해석의 타당성을 검증하였다. 원형 CFT기둥의 내화실험 및 수치해석적 연구를 통해 도출된 내화저항시간과 축력비, 단면직경, 콘크리트 강도의 영향을 각형 CFT기둥의 내화성능과 비교 분석하여 각 영향인자들의 영향을 평가하였다. 본 연구의 수치해석적 연구는 실험결과와 비슷한 거동 및 내화성능을 보였다. 따라서 본 연구에서의 수치해석에 의한 CFT기둥의 내화 성능 예측은 타당하다고 판단된다.

Keywords

References

  1. American Institute of Steel Construction, Inc.,(2003), Steel Design Guide 19 - Fire Resistance of Structural Steel Framing.
  2. Choi, S. M., Park, S.H., Chung, K.S., and Kim, D. K.(2006), Review of Material Properties for Predicting the Fire Resistance of Concrete-Filled Steel Square Tube Column using the Numerical Method, 8th Association for steel-concrete composite structures (ASCCS 2006), China.
  3. Eurocode 4 Part1-2.(2001), Design of Composite Steel and Concrete Structures - Structural Fire Design, British Standards Institution, London.
  4. H. Saito, T. Morita, and H. Uesugi(2004), Fire Resistance of Concrete-Filled Steel Tube Columns under Constant Axial Loads, Journal Environment and Engineering, 35(3), pp.9-16.
  5. ISO(1975), Fire Resistance Test-Elements of Building Construction, ISO 834, Geneva.
  6. Kim, D. K., Choi, S.M., Kim. J.H., Chung, K.S., and Park, S.H.(2005), Experimental study on fire resistance of concrete-filled steel tube column under constant axial loads, International Journal of Steel Structures, No.5, pp.305-313. https://doi.org/10.12989/scs.2005.5.4.305
  7. L.H. Han, X.L. Zhao, Y.F. Yang, and J.B. Feng (2003), Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns, Journal of Structural Engineering, ASCE, 35(3), pp.81-93.
  8. T. Suzuki, M. Kimura, A. Kodaira, and M. Fushimi (1985), Experimental Study on Fire Resistance of Concrete-filled Square Steel Columns, Journal Construction and Engineering, AIJ, 35(3), pp.77-85.
  9. V.K.R. Kodur(1998), Design Equations for Evaluating Fire Resistance of SERC-filled HSS Columns, Journal of Structural Engineering, ASCE, 35(3), pp.81-93.
  10. Y. C. Wang(2002), Steel and Composite Structures - Behaviour and Design for Fire Safety, Spon Press - Taylor & Francis Group.
  11. Y.C. Wang(1999), The Effects of Structural Continuity on the Fire Resistance of Concrete Filled Columns in Nonsway Frames, Journal Constructional Steel Researches, 35(3), pp.177-197.
  12. Yin, J., Zha, X.X. and Li, L. Y.(2006), Fire resistance of axially loaded concrete filled steel tube columns, Journal of Constructional Steel Research, No.62, pp.723-729.
  13. Zha, X.X.,(2003) FE analysis of fire resistance of concrete filled CHS columns, Journal of Constructional Steel Research, No. 59, pp.769-779.