DOI QR코드

DOI QR Code

HIV-1 Tat-mediated protein transduction of human brain creatine kinase into PC12 cells

  • Jeong, Min-Seop (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Min-Jung (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Yeom-Pyo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, So-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun-Hwa (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jang, Sang-Ho (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Kil-Soo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kwon, Oh-Shin (Department of Biochemistry, Kyungpook National University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Published : 2008.07.31

Abstract

Epilepsy is characterized by the presence of spontaneous episodes of abnormal neuronal discharges and its pathogenic mechanisms remain poorly understood. Recently, we found that the expression of creatine kinase (CK) was markedly decreased in an epilepsy animal model using proteomic analysis. A human CK gene was fused with a HIV-1 Tat peptide to generate an in-frame Tat-CK fusion protein. The purified Tat-CK fusion protein was efficiently transduced into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-CK fusion protein was stable for 48 h. Moreover, the Tat-CK fusion protein markedly increased endogenous CK activity levels within the cells. These results suggest that Tat-CK provides a strategy for the therapeutic delivery of proteins in various human diseases including the delivery of CK for potential epilepsy treatment.

Keywords

References

  1. Ellington, W. R. (2001) Evolution and physiological roles of phosphagen system. Annu. Revi. Physiol. 63, 289-325. https://doi.org/10.1146/annurev.physiol.63.1.289
  2. Hoffman, G. G. and Ellington, W. R. (2005) Over-expression, purification and characterization of the oligomerization dynamics of an invertebrate mitochondrial creatine kinase. Biochim. Biophys. Acta 1751, 184-193. https://doi.org/10.1016/j.bbapap.2005.05.011
  3. Chen, L. H., White, C. B., Babbitt, P. C., McLeish, M. J. and Kenyon, G. L. (2000) A comparative study of human muscle and brain creatine kianse expressed in Escherichia coli. J. Protein Chem. 19, 59-66. https://doi.org/10.1023/A:1007047026691
  4. Wayy, M. and Kaddurah-Daouk, R. (2000) Creatine and creatine metabolism. Physiol. Rev. 80, 1107-1213. https://doi.org/10.1152/physrev.2000.80.3.1107
  5. Choi, H., Park, C. S., Kim, B. G., Cho, J. W., Park, J. B., Bae, Y. S. and Bae, D. S. (2001) Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer. Mol. Cells 12, 412-417.
  6. Haas, R. C. and Strauss, A. W. (1990) Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J. Biol. Chem. 265, 6921-6927.
  7. Mariman, E. C., Schepens, J. T. and Wieringa, B. (1989) Complete nucleotide sequence of the human creatine kinase B gene. Nucleic Acids Res. 17, 6385. https://doi.org/10.1093/nar/17.15.6385
  8. Perryman, M. B., Kerner, S. A., Bohlmeyer, T. J. and Roberts, R. (1986) Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem. Biophys. Res. Commun. 140, 981-989. https://doi.org/10.1016/0006-291X(86)90732-1
  9. Villareal-Levy, G., Ma, T. S., Kerner, S. A., Roberts, R. and Perryman, M. B. (1987) Human creatine kinase: isolation and sequence analysis of cDNA clones for the B subunit, development of subunit specific probes and determination of gene copy number. Biochem. Biophys. Res. Commun. 144, 1116-1127. https://doi.org/10.1016/0006-291X(87)91427-6
  10. Gruemer, H. D. and Prior, T. (1987) Carrier detection in Duchenne muscular dystrophy: a review of current issues and approaches. Clin. Chim. Acta 162, 1-18. https://doi.org/10.1016/0009-8981(87)90227-0
  11. Wu, A. H. (1989) Creatine kinase isoforms in ischemic heart disease. Clin. Chem. 35, 7-13.
  12. Tomimoto, H., Yamamoto, K., Homburger, H, A. and Yanagihara, T. (1993) Immunoelectron microscopic investigation of creatine kinase BB-isozyme after cerebral ischemia in gerbils. Acta Neuropathol. 86, 447-455.
  13. Aksenov, M., Aksenova, M. V., Butterfield, A. D. and Markesbery, W. R. (2000) Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J. Neurochem. 74, 2520-2527. https://doi.org/10.1046/j.1471-4159.2000.0742520.x
  14. David, S. S., Shoemaker, M. and Haley, B. E. (1998) Abnormal properties of creatine kinasein Alzheimer's brain disease: correlation of reduced enzyme activity and active site photolabelling with aberrant cytosol-membrane partintioning. Mol. Brain Res. 54, 276-287. https://doi.org/10.1016/S0169-328X(97)00343-4
  15. Delwing, D., Cornelio, A. R., Wajner, M., Wannmacher C. M. D. and Wyse, A. T. S. (2007) Arginine administration reduces creatine kinase activity in rat cerebellum. Metab. Brain Res. 22, 13-23. https://doi.org/10.1007/s11011-006-9028-z
  16. Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  17. Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176. https://doi.org/10.1038/nbt1201-1173
  18. Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. R. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569-1572. https://doi.org/10.1126/science.285.5433.1569
  19. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406. https://doi.org/10.1016/S0955-0674(00)00108-3
  20. Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J. Y., Lee, B. R., Jin, L. H., Park, J. and Choi, S. Y. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167. https://doi.org/10.1016/S0014-5793(00)02215-8
  21. Eum W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat mediated protein transduction of Cu, Zn-superoxide dismutase into pancreatic $\beta$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349. https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  22. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068. https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  23. Eum, W. S., Kim D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669. https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  24. De Lanerolle, N. C., Kim, J. H., Robbins, R. J. and Spencer, D. D. (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 495, 387-395. https://doi.org/10.1016/0006-8993(89)90234-5
  25. Mathern. G. W., Pretorius J. K. and Babb, T. L. (1995) Quantified patterns of mossy fiber sprouting and neurons densities in hippocampal and lesional seizures. J. Neurosurg. 82, 211-219. https://doi.org/10.3171/jns.1995.82.2.0211
  26. Wittner, L., Magloczky, Z., Borhegyi, Z., Halasz, P., Toth, S., Eross, L., Szabo, Z. and Freund, T. F. (2001) Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neurosci. 108, 587-600. https://doi.org/10.1016/S0306-4522(01)00446-8
  27. Towler, E. M., Wilson, L. K., Zhou, Y. C., Ma, T. S. and Fisher, R. J. (2000) A complete system for identifying inhibitors of creatine kinase B. Anal. Biochem. 279, 96-99. https://doi.org/10.1006/abio.1999.4449
  28. Richard, J. P., Melikov, K., Vives, E., Rmos, C., Vereure, B., Gait, M. J., Chernomordik, L. V. and Lebleu, B. (2003) Cell penetrating peptides: A reevaluaation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590. https://doi.org/10.1074/jbc.M209548200
  29. Cashman, S. M., Morris, D. J., and Kuman-Singh, R. (2003). Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142. https://doi.org/10.1016/S1525-0016(03)00131-X
  30. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  31. Alterio, J., Courtois, Y., Robelin, J., Bechet, D. and Martelly, I. (1990) Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells. Biochem. Biophysic. Res. Commun. 166, 1205-1212. https://doi.org/10.1016/0006-291X(90)90994-X
  32. Kang, H. Y., Shim, D., Kang, S. S., Chang, S, I. and Kim, H. Y. (2006) Protein kinase B inhibits endostatin-induced apoptosis in HUVECs. J. Biochem. Mol. Biol. 39, 97-104. https://doi.org/10.5483/BMBRep.2006.39.1.097

Cited by

  1. HIV-1 TAT-mediated protein transduction of human HPRT into deficient cells vol.441, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.10.029
  2. TAT-BoNT/A(1–448), a novel fusion protein as a therapeutic agent: analysis of transcutaneous delivery and enzyme activity vol.100, pp.6, 2016, https://doi.org/10.1007/s00253-015-7240-7
  3. TAT-based drug delivery system – new directions in protein delivery for new hopes? vol.6, pp.5, 2009, https://doi.org/10.1517/17425240902887029
  4. Inhibition of LPS-induced nitric oxide production by transduced Tat-arginine deiminase fusion protein in Raw 264.7 cells vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.286