DOI QR코드

DOI QR Code

Tissue proteomics for cancer biomarker development - Laser microdissection and 2D-DIGE -

  • Kondo, Tadashi (Proteome Bioinformatics Project, National Cancer Center Research Institute)
  • Published : 2008.09.30

Abstract

Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.

Keywords

References

  1. Cancer Statistics in Japan 2007: Foundation for Promotion of Cancer Research (FPCR), Tokyo, Japan
  2. LH, S. and Wittekind, C. (2002) TNM classification of malignant tumours, 6th Ed., John Wiley & Sons, New York, USA
  3. Goya, T., Asamura, H., Yoshimura, H., Kato, H., Shimokata, K., Tsuchiya, R., Sohara, Y., Miya, T. and Miyaoka, E. (2005) Prognosis of 6644 resected non-small cell lung cancers in Japan: a Japanese lung cancer registry study. Lung Cancer 50, 227-234 https://doi.org/10.1016/j.lungcan.2005.05.021
  4. Herbst, R.S. (2003) Dose-comparative monotherapy trials of ZD1839 in previously treated non-small cell lung cancer patients. Semin Oncol 30, 30-38 https://doi.org/10.1053/sonc.2003.37273
  5. Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J.Y., Nishiwaki, Y., Vansteenkiste, J., Kudoh, S., Rischin, D., Eek, R., Horai, T., Noda, K., Takata, I., Smit, E., Averbuch, S., Macleod, A., Feyereislova, A., Dong, R.P. and Baselga, J. (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237-2246 https://doi.org/10.1200/JCO.2003.10.038
  6. Kris, M.G., Natale, R.B., Herbst, R.S., Lynch, T.J., Jr., Prager, D., Belani, C.P., Schiller, J.H., Kelly, K., Spiridonidis, H., Sandler, A., Albain, K.S., Cella, D., Wolf, M.K., Averbuch, S.D., Ochs, J.J. and Kay, A.C. (2003) Efficacy of gefitinib. an inhibitor of the epidermal growth factor receptor tyrosine kinase., in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama 290, 2149-2158 https://doi.org/10.1001/jama.290.16.2149
  7. Inoue, A., Saijo, Y., Maemondo, M., Gomi, K., Tokue, Y., Kimura, Y., Ebina, M., Kikuchi, T., Moriya, T. and Nukiwa, T. (2003) Severe acute interstitial pneumonia and gefitinib. Lancet 361, 137-139 https://doi.org/10.1016/S0140-6736(03)12190-3
  8. Takano, T., Ohe, Y., Sakamoto, H., Tsuta, K., Matsuno, Y., Tateishi, U., Nokihara, H., Yamamoto, N., Sekine, I., Kunitoh, H., Shibata, T., Sakiyama, T., Yoshida, T. and Tamura, T. (2005) Mutations of the epidermal growth factor receptor strongly predict gefitinib sensitivity in Japanese patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 6829-6837 https://doi.org/10.1200/JCO.2005.01.0793
  9. Tarro, G., Perna, A. and Esposito, C. (2005) Early diagnosis of lung cancer by detection of tumor liberated protein. J. Cell Physiol. 203, 1-5 https://doi.org/10.1002/jcp.20195
  10. Chen, G., Gharib, T.G., Huang, C.C., Taylor, J.M., Misek, D.E., Kardia, S.L., Giordano, T.J., Iannettoni, M.D., Orringer, M.B., Hanash, S.M. and Beer, D.G. (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell Proteomics. 1, 304-313 https://doi.org/10.1074/mcp.M200008-MCP200
  11. Fukui, T., Ohe, Y., Tsuta, K., Furuta, K., Sakamoto, H., Takano, T., Nokihara, H., Yamamoto, N., Sekine, I., Kunitoh, H., Asamura, H., Tsuchida, T., Kaneko, M., Kusumoto, M., Yamamoto, S., Yoshida, T. and Tamura, T. (2008) Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with non-small cell lung cancer. Clin. Cancer Res. 14, 4751-4757 https://doi.org/10.1158/1078-0432.CCR-07-5207
  12. Suehara, Y., Kondo, T., Seki, K., Shibata, T., Fujii, K., Gotoh, M., Hasegawa, T., Shimada, Y., Sasako, M., Shimoda, T., Kurosawa, H., Beppu, Y., Kawai, A. and Hirohashi, S. (2008) Pfetin as a prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics. Clin. Cancer Res. 14, 1707-1717 https://doi.org/10.1158/1078-0432.CCR-07-1478
  13. Nilsson, B., Sjolund, K., Kindblom, L.G., Meis-Kindblom, J.M., Bumming, P., Nilsson, O., Andersson, J. and Ahlman, H. (2007) Adjuvant imatinib treatment improves recurrencefree survival in patients with high-risk gastrointestinal stromal tumours (GIST). Br. J. Cancer 96, 1656-1658 https://doi.org/10.1038/sj.bjc.6603797
  14. Yokoo, H., Kondo, T., Okano, T., Nakanishi, K., Sakamoto, M., Kosuge, T., Todo, S. and Hirohashi, S. (2007) Protein expression associated with early intrahepatic recurrence of hepatocellular carcinoma after curative surgery. Cancer Sci. 98, 665-673 https://doi.org/10.1111/j.1349-7006.2007.00441.x
  15. Orimo, T. (2008) APC-binding protein EB1 as a prognostic biomarker of hepatocellular carcinoma revealed by proteomics. Hepatology in press
  16. Lee, H.C., Kim, M. and Wands, J.R. (2006) Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci. 11, 1901-1915 https://doi.org/10.2741/1933
  17. Fujii, K., Kondo, T., Yokoo, H., Yamada, T., Iwatsuki, K. and Hirohashi, S. (205) Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye. Proteomics 5, 1411-1422 https://doi.org/10.1002/pmic.200401004
  18. Wang, Y., Zhou, X., Zhu, H., Liu, S., Zhou, C., Zhang, G., Xue, L., Lu, N., Quan, L., Bai, J., Zhan, Q. and Xu, N. (2005) Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene 24, 6637-6645 https://doi.org/10.1038/sj.onc.1208819
  19. Okano, T., Kondo, T., Fujii, K., Nishimura, T., Takano, T., Ohe, Y., Tsuta, K., Matsuno, Y., Gemma, A., Kato, H., Kudoh, S. and Hirohashi, S. (2007) Proteomic signature corresponding to the response to gefitinib (Iressa. ZD1839). an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. and mutation in EGFR in lung adenocarcinoma. Clin. Cancer Res. 13, 799-805 https://doi.org/10.1158/1078-0432.CCR-06-1654
  20. Hatakeyama, H., Kondo, T., Fujii, K., Nakanishi, Y., Kato, H., Fukuda, S. and Hirohashi, S. (2006) Protein clusters associated with carcinogenesis. histological differentiation and nodal metastasis in esophageal cancer. Proteomics 6, 6300-6316 https://doi.org/10.1002/pmic.200600488
  21. Okano, T., Kondo, T., Kakisaka, T., Fujii, K., Yamada, M., Kato, K., Nishimura, H., Gemma, A., Kudoh, S. and Hirohashi, S. (2006) Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE). Proteomics 6, 3938-3948 https://doi.org/10.1002/pmic.200500883
  22. Kakisaka, T., Kondo, T., Okano, T., Fujii, K., Honda, K., Endo, M., Tsuchida, A., Aoki, T., Itoi, T., Moriyasu, F., Yamada, T., Kato, H., Nishimura, T., Todo, S. and Hirohashi, S. (2007) Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): Up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1, 257-267
  23. Krew, M. (1975) Alpha-fetoprotein. Butterworths, London, UK
  24. Liebman, H.A., Furie, B.C., Tong, M.J., Blanchard, R.A., Lo, K.J., Lee, S.D., Coleman, M.S. and Furie, B. (1984) Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N. Engl. J. Med. 310, 1427-1431 https://doi.org/10.1056/NEJM198405313102204
  25. Capurro, M., Wanless, I.R., Sherman, M., Deboer, G., Shi, W., Miyoshi, E. and Filmus, J. (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125, 89-97 https://doi.org/10.1016/S0016-5085(03)00689-9
  26. Saito, S., Ojima, H., Ichikawa, H., Hirohashi, S. and Kondo, T. (2008) Molecular background of alpha-fetoprotein in liver cancer cells as revealed by global RNA expression analysis. Cancer Science in press
  27. Capurro, M.I., Xiang, Y.Y., Lobe, C. and Filmus, J. (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res. 65, 6245-6254 https://doi.org/10.1158/0008-5472.CAN-04-4244
  28. Zhang, C., Li, Z., Cheng, Y., Jia, F., Li, R., Wu, M., Li, K. and Wei, L. (2007) CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma. Clin. Cancer Res. 13, 944-952 https://doi.org/10.1158/1078-0432.CCR-06-2268
  29. Lee, J.S. and Thorgeirsson, S.S. (2002) Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer. Hepatology 35, 1134-1143 https://doi.org/10.1053/jhep.2002.33165
  30. Yokoo, H., Kondo, T., Fujii, K., Yamada, T., Todo, S. and Hirohashi, S. (2004) Proteomic signature corresponding to alpha fetoprotein expression in liver cancer cells. Hepatology 40, 609-617 https://doi.org/10.1002/hep.20372
  31. Mroczko, B., Kozlowski, M., Groblewska, M., Lukaszewicz, M., Niklinski, J., Jelski, W., Laudanski, J., Chyczewski, L. and Szmitkowski, M. (2008) The diagnostic value of the measurement of matrix metalloproteinase 9, (MMP-9)., squamous cell cancer antigen (SCC) and carcinoembryonic antigen (CEA) in the sera of esophageal cancer patients. Clin. Chim. Acta. 389, 61-66 https://doi.org/10.1016/j.cca.2007.11.023
  32. Chignard, N., Shang, S., Wang, H., Marrero, J., Brechot, C., Hanash, S. and Beretta, L. (2006) Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: Detection of generated fragments in patient sera. Gastroenterology 130, 2010-2022 https://doi.org/10.1053/j.gastro.2006.02.058
  33. Hober, S. and Uhlen, M. (2008) Human protein atlas and the use of microarray technologies. Curr. Opin. Biotechnol. 19, 30-35 https://doi.org/10.1016/j.copbio.2007.11.006
  34. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A. and Liotta, L.A. (1996) Laser capture microdissection. Science 274, 998-1001 https://doi.org/10.1126/science.274.5289.998
  35. Banks, R.E., Dunn, M.J., Forbes, M.A., Stanley, A., Pappin, D., Naven, T., Gough, M., Harnden, P. and Selby, P.J. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis--preliminary findings. Electrophoresis 20, 689-700 https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<689::AID-ELPS689>3.0.CO;2-J
  36. Ornstein, D.K., Gillespie, J.W., Paweletz, C.P., Duray, P.H., Herring, J., Vocke, C.D., Topalian, S.L., Bostwick, D.G., Linehan, W.M., Petricoin, E.F., 3rd. and Emmert-Buck, M.R. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21, 2235-2242 https://doi.org/10.1002/1522-2683(20000601)21:11<2235::AID-ELPS2235>3.0.CO;2-A
  37. Emmert-Buck, M.R., Gillespie, J.W., Paweletz, C.P., Ornstein, D.K., Basrur, V., Appella, E., Wang, Q.H., Huang, J., Hu, N., Taylor, P. and Petricoin, E.F., 3rd. (2000) An approach to proteomic analysis of human tumors. Mol. Carcinog 27, 158-165 https://doi.org/10.1002/(SICI)1098-2744(200003)27:3<158::AID-MC2>3.0.CO;2-2
  38. Lawrie, L.C., Curran, S., McLeod, H.L., Fothergill, J.E. and Murray, G.I. (2001) Application of laser capture microdissection and proteomics in colon cancer. Mol. Pathol. 54, 253-258 https://doi.org/10.1136/mp.54.4.253
  39. Wright, G.L., Cazares, L.H. and Leung, S.M. (1999) Protein chip surface enhanced laser desorption/ionization (SELDI) mass spectrometry: A novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostate Dis. 2, 264-276 https://doi.org/10.1038/sj.pcan.4500384
  40. Von Eggeling, F., Davies, H., Lomas, L., Fiedler, W., Junker, K., Claussen, U. and Ernst, G. (2000) Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. Biotechniques 29, 1066-1070
  41. Simone, NL., Remaley, AT., Charboneau, L., Petricoin, EF., 3rd., Glickman, JW., Emmert-Buck, MR., Fleisher, TA. and Liotta, LA. (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445-452 https://doi.org/10.1016/S0002-9440(10)64749-9
  42. Natkunam, Y., Rouse, R.V., Zhu, S., Fisher, C. and van, De Rijn M (2000) Immunoblot analysis of CD34 expression in histologically diverse neoplasms. Am. J. Pathol. 156, 21-27 https://doi.org/10.1016/S0002-9440(10)64701-3
  43. Ornstein, D.K., Englert, C., Gillespie, J.W., Paweletz, C.P., Linehan, W.M., Emmert-Buck, M.R. and Petricoin, E.F., 3rd. (2000) Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6, 353-356
  44. Paweletz, C.P., Ornstein, D.K., Roth, M.J., Bichsel, V.E., Gillespie, J.W., Calvert, V.S., Vocke, C.D., Hewitt, S.M., Duray, P.H., Herring, J., Wang, Q.H., Hu, N., Linehan, W.M., Taylor, P.R., Liotta, L.A., Emmert-Buck, M.R. and Petricoin, E.F., 3rd. (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 60, 6293-6297
  45. Craven, R.A., Totty, N., Harnden, P., Selby, P.J. and Banks, R.E. (2002) Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am. J. Pathol. 160, 815-822 https://doi.org/10.1016/S0002-9440(10)64904-8
  46. Shekouh, A.R., Thompson, C.C., Prime, W., Campbell, F., Hamlett, J., Herrington, C.S., Lemoine, N.R., Crnogorac- Jurcevic, T., Buechler, M.W., Friess, H., Neoptolemos, J.P., Pennington, S.R. and Costello, E. (2003) Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics 3, 1988-2001 https://doi.org/10.1002/pmic.200300466
  47. Unlu, M., Morgan, M.E. and Minden, J.S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-2077 https://doi.org/10.1002/elps.1150181133
  48. Kondo, T., Seike, M., Mori, Y., Fujii, K., Yamada, T. and Hirohashi, S. (2003) Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics 3, 1758-1766 https://doi.org/10.1002/pmic.200300531
  49. Seike, M., Kondo, T., Fujii, K., Okano, T., Yamada, T., Matsuno, Y., Gemma, A., Kudoh, S. and Hirohashi, S. (2005) Proteomic signatures for histological types of lung cancer. Proteomics 5, 2939-2948 https://doi.org/10.1002/pmic.200401166
  50. Sitek, B., Luttges, J., Marcus, K., Kloppel, G., Schmiegel, W., Meyer, H.E., Hahn, S.A. and Stuhler, K. (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5, 2665-2679 https://doi.org/10.1002/pmic.200401298
  51. Greengauz-Roberts, O., Stoppler, H., Nomura, S., Yamaguchi, H., Goldenring, J.R., Podolsky, R.H., Lee, J.R. and Dynan, W.S. (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5, 1746-1757 https://doi.org/10.1002/pmic.200401068
  52. Wilson, K.E., Marouga, R., Prime, J.E., Pashby, D.P., Orange, P.R., Crosier, S., Keith, A.B., Lathe, R., Mullins, J., Estibeiro, P., Bergling, H., Hawkins, E. and Morris, C.M. (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5, 3851-3858 https://doi.org/10.1002/pmic.200401255
  53. Sitek, B., Potthoff, S., Schulenborg, T., Stegbauer, J., Vinke, T., Rump, L.C., Meyer, H.E., Vonend, O. and Stuhler, K. (2006) Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labelling. Proteomics 6, 4337-4345 https://doi.org/10.1002/pmic.200500739
  54. Kondo, T. and Hirohashi, S. (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat. Protoc. 1, 2940-2956 https://doi.org/10.1038/nprot.2006.421
  55. Fujii, K., Kondo, T., Yokoo, H., Okano, T., Yamada, M., Yamada, T., Iwatsuki, K. and Hirohashi, S. (2006) Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye. Proteomics 6, 1640-53 https://doi.org/10.1002/pmic.200401346
  56. Young, D.A., Voris, B.P., Maytin, E.V. and Colbert, R.A. (1983) Very-high-resolution two-dimensional electrophoretic separation of proteins on giant gels. Methods Enzymol 91, 190-214 https://doi.org/10.1016/S0076-6879(83)91017-0
  57. Klose, J., Nock, C., Herrmann, M., Stuhler, K., Marcus, K., Bluggel, M., Krause, E., Schalkwyk, L.C., Rastan, S., Brown, S.D., Bussow, K., Himmelbauer, H. and Lehrach, H. (2002) Genetic analysis of the mouse brain proteome. Nat. Genet. 30, 385-393 https://doi.org/10.1038/ng861
  58. Oguri, T., Takahata, I., Katsuta, K., Nomura, E., Hidaka, M. and Inagaki, N. (2002) Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics 2, 666-672 https://doi.org/10.1002/1615-9861(200206)2:6<666::AID-PROT666>3.0.CO;2-V

Cited by

  1. Mass spectrometry-based clinical proteomics: Head-and-neck cancer biomarkers and drug-targets discovery vol.29, pp.6, 2010, https://doi.org/10.1002/mas.20296
  2. Establishment of combined analytical method to extract the genes of interest from transcriptome data vol.7, 2016, https://doi.org/10.1016/j.bbrep.2016.05.015
  3. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue vol.425, pp.2, 2012, https://doi.org/10.1016/j.ab.2012.02.034
  4. Scope and limitations of MALDI-TOF MS blood serum peptide profiling in cancer diagnostics vol.42, pp.5, 2016, https://doi.org/10.1134/S1068162016050071
  5. Current advances in tumor proteomics and candidate biomarkers for hepatic cancer vol.6, pp.5, 2009, https://doi.org/10.1586/epr.09.72
  6. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary vol.72, pp.10, 2011, https://doi.org/10.1016/j.phytochem.2010.10.017
  7. Discovery and validation of graft-versus-host disease biomarkers vol.121, pp.4, 2013, https://doi.org/10.1182/blood-2012-08-355990
  8. Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue vol.395, pp.8, 2009, https://doi.org/10.1007/s00216-009-3187-9
  9. Mass Spectrometric Characterization of Protein Structure Details Refines the Proteome Signature for Invasive Ductal Breast Carcinoma vol.22, pp.3, 2011, https://doi.org/10.1007/s13361-010-0031-6
  10. Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer vol.10, pp.5, 2010, https://doi.org/10.1038/nrc2831
  11. Cell-based proteome analysis: The first stage in the pipeline for biomarker discovery vol.1794, pp.9, 2009, https://doi.org/10.1016/j.bbapap.2009.07.001
  12. Challenges in cancer research and multifaceted approaches for cancer biomarker quest vol.583, pp.11, 2009, https://doi.org/10.1016/j.febslet.2009.03.042
  13. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a tissue biomarker for detection of early Hepatocellular carcinoma in patients with cirrhosis vol.5, pp.1, 2012, https://doi.org/10.1186/1756-8722-5-37
  14. Proteomic analysis of tissue samples in translational breast cancer research vol.11, pp.3, 2014, https://doi.org/10.1586/14789450.2014.899469
  15. OmicApproaches in Environmental Issues vol.74, pp.15-16, 2011, https://doi.org/10.1080/15287394.2011.582259