DOI QR코드

DOI QR Code

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung (NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Kyu-Won (NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2008.05.31

Abstract

The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

Keywords

References

  1. Garcia, C. M., Darland, D. C., Massingham, L. J. and D'Amore, P. A. (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res. Dev. Brain Res. 152, 25-38 https://doi.org/10.1016/j.devbrainres.2004.05.008
  2. Neuwelt, E., Abbott, N. J., Abrey, L., Banks, W. A., Blakley, B., Davis, T., Engelhardt, B., Grammas, P., Nedergaard, M., Nutt, J., Pardridge, W., Rosenberg, G. A., Smith, Q. and Drewes, L. R. (2008) Strategies to advance translational research into brain barriers. Lancet Neurol. 7, 84-96 https://doi.org/10.1016/S1474-4422(07)70326-5
  3. Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y. J. and Kim, K. W. (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9, 900-906 https://doi.org/10.1038/nm889
  4. Lindahl, P., Johansson, B. R., Leveen, P. and Betsholtz, C. (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242-245 https://doi.org/10.1126/science.277.5323.242
  5. Sugiyama, Y., Kusuhara, H. and Suzuki, H. (1999) Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain. J. Control. Release 62, 179-186 https://doi.org/10.1016/S0168-3659(99)00036-X
  6. Zhang, Y., Porat, R. M., Alon, T., Keshet, E. and Stone, J. (1999) Tissue oxygen levels control astrocyte movement and differentiation in developing retina. Brain Res. Dev. Brain Res. 118, 135-145 https://doi.org/10.1016/S0165-3806(99)00140-6
  7. Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T. and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738-4747 https://doi.org/10.1523/JNEUROSCI.15-07-04738.1995
  8. Choi, Y. K., Kim, J. H., Kim, W. J., Lee, H. Y., Park, J. A., Lee, S. W., Yoon, D. K., Kim, H. H., Chung, H., Yu, Y. S. and Kim, K. W. (2007) AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia- inducible factor-1alpha. J. Neurosci. 27, 4472-4481 https://doi.org/10.1523/JNEUROSCI.5368-06.2007
  9. West, H., Richardson, W. D. and Fruttiger, M. (2005) Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development 132, 1855-1862 https://doi.org/10.1242/dev.01732
  10. Mautes, A. E., Weinzierl, M. R., Donovan, F. and Noble, L. J. (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys. Ther. 80, 673-687
  11. Sharma, H. S. (2005) Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr. Pharm. Des. 11, 1353-1389 https://doi.org/10.2174/1381612053507837
  12. Pan, W., Banks, W. A. and Kastin, A. J. (1997) Permeability of the blood-brain and blood-spinal cord barriers to interferons. J. Neuroimmunol. 76, 105-111 https://doi.org/10.1016/S0165-5728(97)00034-9
  13. Juhn, S. K., Hunter, B. A. and Odland, R. M. (2001) Blood-labyrinth barrier and fluid dynamics of the inner ear. Int. Tinnitus J. 7, 72-83
  14. Steyger, P. S., Peters, S. L., Rehling, J., Hordichok, A. and Dai, C. F. (2003) Uptake of gentamicin by bullfrog saccular hair cells in vitro. J. Assoc. Res. Otolaryngol. 4, 565-578 https://doi.org/10.1007/s10162-003-4002-5
  15. Kitajiri, S. I., Furuse, M., Morita, K., Saishin-Kiuchi, Y., Kido, H., Ito, J. and Tsukita, S. (2004) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear. Res. 187, 25-34 https://doi.org/10.1016/S0378-5955(03)00338-1
  16. Wilcox, E. R., Burton, Q. L., Naz, S., Riazuddin, S., Smith, T. N., Ploplis, B., Belyantseva, I., Ben-Yosef, T., Liburd, N. A., Morell, R. J., Kachar, B., Wu, D. K., Griffith, A. J. and Friedman, T. B. (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104, 165-172 https://doi.org/10.1016/S0092-8674(01)00200-8
  17. Rechthand, E. and Rapoport, S. I. (1987) Regulation of the microenvironment of peripheral nerve: role of the bloodnerve barrier. Prog. Neurobiol. 28, 303-343 https://doi.org/10.1016/0301-0082(87)90006-2
  18. Wadhwani, K. C. and Rapoport, S. I. (1994) Transport properties of vertebrate blood-nerve barrier: comparison with blood-brain barrier. Prog. Neurobiol. 43, 235-279 https://doi.org/10.1016/0301-0082(94)90002-7
  19. Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E. and Betsholtz, C. (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8, 1875-1887 https://doi.org/10.1101/gad.8.16.1875
  20. Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M. and Dvorak, H. F. (2002) Stable expression of angiopoietin- 1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82, 387-401 https://doi.org/10.1038/labinvest.3780433
  21. Thurston, G., Rudge, J. S., Ioffe, E., Zhou, H., Ross, L., Croll, S. D., Glazer, N., Holash, J., McDonald, D. M. and Yancopoulos, G. D. (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460-463 https://doi.org/10.1038/74725
  22. Pepper, M. S. (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8, 21-43 https://doi.org/10.1016/S1359-6101(96)00048-2
  23. Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S. and Akhurst, R. J. (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor- beta 1 knock out mice. Development 121, 1845-1854
  24. Gerhardt, H., Wolburg, H. and Redies, C. (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472-479 https://doi.org/10.1002/1097-0177(200007)218:3<472::AID-DVDY1008>3.0.CO;2-#
  25. Mi, H., Haeberle, H. and Barres, B. A. (2001) Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21, 1538-1547 https://doi.org/10.1523/JNEUROSCI.21-05-01538.2001
  26. Nishino, J., Yamashita, K., Hashiguchi, H., Fujii, H., Shimazaki, T. and Hamada, H. (2004) Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension. EMBO J. 23, 1998-2008 https://doi.org/10.1038/sj.emboj.7600202
  27. Park, J. A., Lee, H. S., Ko, K. J., Park, S. Y., Kim, J. H., Choe, G., Kweon, H. S., Song, H. S., Ahn, J. C., Yu, Y. S. and Kim, K. W. (2008) Meteorin regulates angiogenesis at the gliovascular interface. Glia 56, 247-258 https://doi.org/10.1002/glia.20600
  28. Vailhe, B. and Feige, J. J. (2003) Thrombospondins as anti- angiogenic therapeutic agents. Curr. Pharm. Des. 9, 583-588 https://doi.org/10.2174/1381612033391342
  29. Reuss, B., Dono, R. and Unsicker, K. (2003) Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23, 6404-6412 https://doi.org/10.1523/JNEUROSCI.23-16-06404.2003
  30. Pekny, M., Stanness, K. A., Eliasson, C., Betsholtz, C. and Janigro, D. (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22, 390-400 https://doi.org/10.1002/(SICI)1098-1136(199804)22:4<390::AID-GLIA8>3.0.CO;2-7
  31. Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M. and Sawada, N. (1999) Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem. Biophys. Res. Commun. 261, 108-112 https://doi.org/10.1006/bbrc.1999.0992
  32. Christopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., Lawler, J., Mosher, D. F., Bornstein, P. and Barres, B. A. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421-433 https://doi.org/10.1016/j.cell.2004.12.020
  33. Zhang, J. M., Wang, H. K., Ye, C. Q., Ge, W., Chen, Y., Jiang, Z. L., Wu, C. P., Poo, M. M. and Duan, S. (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971-982 https://doi.org/10.1016/S0896-6273(03)00717-7
  34. Marrelli, S. P. (2001) Mechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses. Am. J. Physiol. Heart Circ. Physiol. 281, H1759-1766 https://doi.org/10.1152/ajpheart.2001.281.4.H1759
  35. Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan, T. and Carmignoto, G. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43-50 https://doi.org/10.1038/nn980
  36. Jakovcevic, D. and Harder, D. R. (2007) Role of astrocytes in matching blood flow to neuronal activity. Curr. Top. Dev. Biol. 79, 75-97 https://doi.org/10.1016/S0070-2153(06)79004-4
  37. Abbott, N. J., Ronnback, L. and Hansson, E. (2006) Astrocyteendothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53 https://doi.org/10.1038/nrn1824
  38. Guillemin, G. J. and Brew, B. J. (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol. 75, 388-397 https://doi.org/10.1189/jlb.0303114
  39. Zenker, D., Begley, D., Bratzke, H., Rubsamen-Waigmann, H. and von Briesen, H. (2003) Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J. Physiol. 551, 1023-1032 https://doi.org/10.1113/jphysiol.2003.045880
  40. Poritz, L. S., Garver, K. I., Tilberg, A. F. and Koltun, W. A. (2004) Tumor necrosis factor alpha disrupts tight junction assembly. J. Surg. Res. 116, 14-18 https://doi.org/10.1016/S0022-4804(03)00311-1
  41. Schinkel, A. H. (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 36, 179-194 https://doi.org/10.1016/S0169-409X(98)00085-4
  42. Simpson, I. A., Vannucci, S. J., DeJoseph, M. R. and Hawkins, R. A. (2001) Glucose transporter asymmetries in the bovine blood-brain barrier. J. Biol. Chem. 276, 12725-12729 https://doi.org/10.1074/jbc.M010897200
  43. O'Kane, R. L., Martinez-Lopez, I., DeJoseph, M. R., Vina, J. R. and Hawkins, R. A. (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274, 31891-31895 https://doi.org/10.1074/jbc.274.45.31891
  44. McAllister, M. S., Krizanac-Bengez, L., Macchia, F., Naftalin, R. J., Pedley, K. C., Mayberg, M. R., Marroni, M., Leaman, S., Stanness, K. A. and Janigro, D. (2001) Mechanisms of glucose transport at the blood-brain barrier: an in vitro study. Brain Res. 904, 20-30 https://doi.org/10.1016/S0006-8993(01)02418-0
  45. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632 https://doi.org/10.1038/364626a0
  46. Brown, G. C., Bolanos, J. P., Heales, S. J. and Clark, J. B. (1995) Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci. Lett 193, 201-204 https://doi.org/10.1016/0304-3940(95)11703-Y
  47. Zhang, Z. G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N. and Chopp, M. (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829-838 https://doi.org/10.1172/JCI9369
  48. Lee, S., Chen, T. T., Barber, C. L., Jordan, M. C., Murdock, J., Desai, S., Ferrara, N., Nagy, A., Roos, K. P. and Iruela-Arispe, M. L. (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691-703 https://doi.org/10.1016/j.cell.2007.06.054
  49. Ruberte, J., Ayuso, E., Navarro, M., Carretero, A., Nacher, V., Haurigot, V., George, M., Llombart, C., Casellas, A., Costa, C., Bosch, A. and Bosch, F. (2004) Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J. Clin. Invest. 113, 1149-1157 https://doi.org/10.1172/JCI19478
  50. Didier, N., Romero, I. A., Creminon, C., Wijkhuisen, A., Grassi, J. and Mabondzo, A. (2003) Secretion of interleukin- 1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J. Neurochem. 86, 246-254 https://doi.org/10.1046/j.1471-4159.2003.01829.x
  51. Massieu, L., Gomez-Roman, N. and Montiel, T. (2000) In vivo potentiation of glutamate-mediated neuronal damage after chronic administration of the glycolysis inhibitor iodoacetate. Exp. Neurol. 165, 257-267 https://doi.org/10.1006/exnr.2000.7481
  52. Lieth, E., Barber, A. J., Xu, B., Dice, C., Ratz, M. J., Tanase, D. and Strother, J. M. (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47, 815-820 https://doi.org/10.2337/diabetes.47.5.815
  53. Barber, A. J., Antonetti, D. A. and Gardner, T. W. (2000) Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Sci. 41, 3561-3568

Cited by

  1. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases vol.235, 2016, https://doi.org/10.1016/j.jconrel.2016.05.044
  2. Effect of magnolol on cerebral injury and blood brain barrier dysfunction induced by ischemia-reperfusion in vivo and in vitro vol.32, pp.4, 2017, https://doi.org/10.1007/s11011-017-0004-6
  3. Impaired retinal microcirculation in multiple sclerosis vol.22, pp.14, 2016, https://doi.org/10.1177/1352458516631035
  4. Streptococcal Antibody Probe Crosses the Blood Brain Barrier and Interacts within the Basal Ganglia vol.05, pp.02, 2015, https://doi.org/10.4236/ojpathology.2015.52007
  5. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult vol.121, pp.3, 2011, https://doi.org/10.1007/s00401-010-0783-x
  6. Chronic depletion of gonadal testosterone leads to blood–brain barrier dysfunction and inflammation in male mice vol.37, pp.9, 2017, https://doi.org/10.1177/0271678X16683961
  7. Characterization of Developmental Neurotoxicity of As, Cd, and Pb Mixture: Synergistic Action of Metal Mixture in Glial and Neuronal Functions vol.118, pp.2, 2010, https://doi.org/10.1093/toxsci/kfq266
  8. First experience in analysing pulsatile retinal capillary flow and arteriolar structural parameters measured noninvasively in hypertensive patients vol.32, pp.11, 2014, https://doi.org/10.1097/HJH.0000000000000308
  9. A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and Peripheral Nerve Regeneration In Vivo vol.73, pp.4, 2012, https://doi.org/10.1016/j.neuron.2011.11.031
  10. Exposure to Lipopolysaccharide and/or Unconjugated Bilirubin Impair the Integrity and Function of Brain Microvascular Endothelial Cells vol.7, pp.5, 2012, https://doi.org/10.1371/journal.pone.0035919
  11. Novel insights in the dysfunction of human blood-brain barrier after glycation vol.155, 2016, https://doi.org/10.1016/j.mad.2016.03.004
  12. Effects of Peripheral Inflammation on the Blood-Spinal Cord Barrier vol.8, 2012, https://doi.org/10.1186/1744-8069-8-44
  13. Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes vol.261, 2014, https://doi.org/10.1016/j.expneurol.2014.06.012
  14. Role of retinal glial cells in neurotransmitter uptake and metabolism vol.54, pp.3-4, 2009, https://doi.org/10.1016/j.neuint.2008.10.014
  15. Transcriptome Analysis of the Octopus vulgaris Central Nervous System vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0040320
  16. Hepcidin antagonists for potential treatments of disorders with hepcidin excess vol.5, 2014, https://doi.org/10.3389/fphar.2014.00086
  17. Connexin channel and its role in diabetic retinopathy 2017, https://doi.org/10.1016/j.preteyeres.2017.06.001
  18. Single compartment drug delivery vol.190, 2014, https://doi.org/10.1016/j.jconrel.2014.04.049
  19. Anemia rather than hypertension contributes to cerebral hyperperfusion in young adults undergoing hemodialysis: A phase contrast MRI study vol.6, pp.1, 2016, https://doi.org/10.1038/srep22346
  20. Astrocyte- and Endothelial-Targeted CCL2 Conditional Knockout Mice: Critical Tools for Studying the Pathogenesis of Neuroinflammation vol.39, pp.1-2, 2009, https://doi.org/10.1007/s12031-009-9197-4
  21. Cypermethrin induces astrocyte damage: Role of aberrant Ca2+, ROS, JNK, P38, matrix metalloproteinase 2 and migration related reelin protein vol.111, 2014, https://doi.org/10.1016/j.pestbp.2014.03.005
  22. Kaurane diterpenes from Sideritis spp. exert a cytoprotective effect against oxidative injury that is associated with modulation of the Nrf2 system vol.93, 2013, https://doi.org/10.1016/j.phytochem.2013.03.017
  23. Local application of tropicamide 0.5% reduces retinal capillary blood flow vol.22, pp.6, 2013, https://doi.org/10.3109/08037051.2013.782956
  24. Novel drug-delivery approaches to the blood-brain barrier vol.31, pp.2, 2015, https://doi.org/10.1007/s12264-014-1498-0
  25. High Glucose Alters Retinal Astrocytes Phenotype through Increased Production of Inflammatory Cytokines and Oxidative Stress vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0103148
  26. In Vitro Microfluidic Models for Neurodegenerative Disorders 2017, https://doi.org/10.1002/adhm.201700489
  27. Monocyte chemoattractant protein-1 and the blood–brain barrier vol.71, pp.4, 2014, https://doi.org/10.1007/s00018-013-1459-1
  28. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models vol.248, pp.1, 2012, https://doi.org/10.1111/j.1600-065X.2012.01127.x
  29. Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity: A biomarker of blood–cerebrospinal fluid barrier permeability vol.478, pp.3, 2010, https://doi.org/10.1016/j.neulet.2010.05.012
  30. Blood-brain barrier and neurological diseases vol.6, pp.4, 2015, https://doi.org/10.1111/cen3.12229
  31. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia vol.358, pp.3, 2016, https://doi.org/10.1124/jpet.116.234476
  32. The neuroinflammatory hypothesis of delirium vol.119, pp.6, 2010, https://doi.org/10.1007/s00401-010-0674-1
  33. Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches vol.64, pp.2, 2010, https://doi.org/10.1016/j.brainresrev.2010.05.003
  34. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles vol.24, pp.7, 2016, https://doi.org/10.3109/1061186X.2015.1132223
  35. Retinal Glia vol.2, pp.1, 2015, https://doi.org/10.4199/C00122ED1V01Y201412NGL003
  36. Changes in the blood-nerve barrier after sciatic nerve cold injury: indications supporting early treatment vol.10, pp.3, 2015, https://doi.org/10.4103/1673-5374.153690
  37. Monoclonal antibodies in neuro-oncology vol.3, pp.2, 2011, https://doi.org/10.4161/mabs.3.2.14239
  38. Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin vol.14, 2017, https://doi.org/10.1016/j.msard.2017.03.007
  39. Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model vol.31, pp.9, 2016, https://doi.org/10.1007/s10103-016-2062-0
  40. The Cerebral Circulation vol.1, pp.1, 2009, https://doi.org/10.4199/C00005ED1V01Y200912ISP002
  41. Platinum-Induced Ototoxicity in Children: A Consensus Review on Mechanisms, Predisposition, and Protection, Including a New International Society of Pediatric Oncology Boston Ototoxicity Scale vol.30, pp.19, 2012, https://doi.org/10.1200/JCO.2011.39.1110
  42. New functions of Müller cells vol.61, pp.5, 2013, https://doi.org/10.1002/glia.22477
  43. Microarray analyses of hypoxia-regulated genes in an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent manner vol.275, pp.22, 2008, https://doi.org/10.1111/j.1742-4658.2008.06686.x
  44. New software analyses increase the reliability of measurements of retinal arterioles morphology by scanning laser Doppler flowmetry in humans vol.29, pp.4, 2011, https://doi.org/10.1097/HJH.0b013e328343c27a
  45. Cell-Culture Models of the Blood–Brain Barrier vol.45, pp.8, 2014, https://doi.org/10.1161/STROKEAHA.114.005427
  46. Pulsatile interaction between the macro-vasculature and micro-vasculature: proof-of-concept among patients with type 2 diabetes vol.118, pp.11, 2018, https://doi.org/10.1007/s00421-018-3972-2
  47. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092371
  48. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration vol.49, pp.4, 2018, https://doi.org/10.1134/S1062360418040033
  49. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-25603-5