DOI QR코드

DOI QR Code

Application of hybrid LRR technique to protein crystallization

  • Published : 2008.05.31

Abstract

LRR family proteins play important roles in a variety of physiological processes. To facilitate their production and crystallization, we have invented a novel method termed "Hybrid LRR Technique". Using this technique, the first crystal structures of three TLR family proteins could be determined. In this review, design principles and application of the technique to protein crystallization will be summarized. For crystallization of TLRs, hagfish VLR receptors were chosen as the fusion partners and the TLR and the VLR fragments were fused at the conserved LxxLxLxxN motif to minimize local structural incompatibility. TLR-VLR hybridization did not disturb structures and functions of the target TLR proteins. The Hybrid LRR Technique is a general technique that can be applied to structural studies of other LRR proteins. It may also have broader application in biochemical and medical application of LRR proteins by modifying them without compromising their structural integrity.

Keywords

References

  1. Matsushima, N., Tanaka, T., Enkhbayar, P., Mikami, T., Taga, M., Yamada, K. and Kuroki, Y. (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8, 124 https://doi.org/10.1186/1471-2164-8-124
  2. Kobe, B. and Deisenhofer, J. (1993) Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751-756 https://doi.org/10.1038/366751a0
  3. Kobe, B. and Deisenhofer, J. (1994) The leucine-rich repeat: a versatile binding motif. Trends. Biochem. Sci. 19, 415-421 https://doi.org/10.1016/0968-0004(94)90090-6
  4. Kobe, B. and Kajava, A. V. (2001) The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725-732 https://doi.org/10.1016/S0959-440X(01)00266-4
  5. Peters, J. W., Stowell, M. H. and Rees, D. C. (1996) A leucine- rich repeat variant with a novel repetitive protein structural motif. Nat. Struct. Biol. 3, 991-994 https://doi.org/10.1038/nsb1296-991
  6. Gay, N. J. and Gangloff, M. (2007) Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141-165 https://doi.org/10.1146/annurev.biochem.76.060305.151318
  7. Kajava, A. V. (1998) Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277, 519-527 https://doi.org/10.1006/jmbi.1998.1643
  8. He, X. L., Bazan, J. F., McDermott, G., Park, J. B., Wang, K., Tessier-Lavigne, M., He, Z. and Garcia, K. C. (2003) Structure of the Nogo receptor ectodomain: a recognition module implicated in myelin inhibition. Neuron 38, 177-185 https://doi.org/10.1016/S0896-6273(03)00232-0
  9. Kim, H. M., Oh, S. C., Lim, K. J., Kasamatsu, J., Heo, J. Y., Park, B. S., Lee, H., Yoo, O. J., Kasahara, M. and Lee, J. O. (2007) Structural diversity of the hagfish variable lymphocyte receptors. J. Biol. Chem. 282, 6726-6732 https://doi.org/10.1074/jbc.M608471200
  10. Choe, J., Kelker, M. S. and Wilson, I. A. (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581-585 https://doi.org/10.1126/science.1115253
  11. Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R. and Segal, D. M. (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends. Immunol. 24, 528-533 https://doi.org/10.1016/S1471-4906(03)00242-4
  12. Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E. and Aderem, A. (2005) The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. U.S.A. 102, 9577-9582. https://doi.org/10.1073/pnas.0502272102
  13. Enkhbayar, P., Kamiya, M., Osaki, M., Matsumoto, T. and Matsushima, N. (2004) Structural principles of leucine- rich repeat (LRR) proteins. Proteins 54, 394-403 https://doi.org/10.1002/prot.10605
  14. Kim, J. I., Lee, C. J., Jin, M. S., Lee, C. H., Paik, S. G., Lee, H. and Lee, J. O. (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280, 11347-11351 https://doi.org/10.1074/jbc.M414607200
  15. Kim, H. M., Park, B. S., Kim, J. I., Kim, S. E., Lee, J., Oh, S. C., Enkhbayar, P., Matsushima, N., Lee, H., Yoo, O. J. and Lee, J. O. (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906-917 https://doi.org/10.1016/j.cell.2007.08.002
  16. Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H. and Lee, J. O. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071-1082 https://doi.org/10.1016/j.cell.2007.09.008
  17. Tan, X., Calderon-Villalobos, L. I., Sharon, M., Zheng, C., Robinson, C. V., Estelle, M. and Zheng, N. (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645 https://doi.org/10.1038/nature05731
  18. Buchanan, S. G. and Gay, N. J. (1996) Structural and functional diversity in the leucine-rich repeat family of proteins. Prog. Biophys. Mol. Biol. 65, 1-44
  19. Kobe, B. and Deisenhofer, J. (1996) Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J. Mol. Biol. 264, 1028-1043 https://doi.org/10.1006/jmbi.1996.0694
  20. Huizinga, E. G., Tsuji, S., Romijn, R. A., Schiphorst, M. E., de Groot, P. G., Sixma, J. J. and Gros, P. (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297, 1176-1179 https://doi.org/10.1126/science.107355
  21. Herrin, B. R., Alder, M. N., Roux, K. H., Sina, C., Ehrhardt, G. R., Boydston, J. A., Turnbough, C. L., Jr. and Cooper, M. D. (2008) Structure and specificity of lamprey monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 105, 2040-2045. https://doi.org/10.1073/pnas.0711619105
  22. Schubert, W. D., Urbanke, C., Ziehm, T., Beier, V., Machner, M. P., Domann, E., Wehland, J., Chakraborty, T. and Heinz, D. W. (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111, 825-836 https://doi.org/10.1016/S0092-8674(02)01136-4
  23. Pancer, Z. and Cooper, M. D. (2006) The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497-518 https://doi.org/10.1146/annurev.immunol.24.021605.090542
  24. Pancer, Z., Amemiya, C. T., Ehrhardt, G. R., Ceitlin, J., Gartland, G. L. and Cooper, M. D. (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174-180 https://doi.org/10.1038/nature02740
  25. Pancer, Z., Saha, N. R., Kasamatsu, J., Suzuki, T., Amemiya, C. T., Kasahara, M. and Cooper, M. D. (2005) Variable lymphocyte receptors in hagfish. Proc. Natl. Acad. Sci. U.S.A. 102, 9224-9229. https://doi.org/10.1073/pnas.0503792102
  26. Alder, M. N., Rogozin, I. B., Iyer, L. M., Glazko, G. V., Cooper, M. D. and Pancer, Z. (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310, 1970-1973 https://doi.org/10.1126/science.1119420
  27. Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 https://doi.org/10.1038/41131
  28. Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511 https://doi.org/10.1038/nri1391
  29. West, A. P., Koblansky, A. A. and Ghosh, S. (2006) Recognition and signaling by toll-like receptors. Annu. Rev. Cell. Dev. Biol. 22, 409-437 https://doi.org/10.1146/annurev.cellbio.21.122303.115827
  30. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K. and Kimoto, M. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782 https://doi.org/10.1084/jem.189.11.1777
  31. Viriyakosol, S., Tobias, P. S., Kitchens, R. L. and Kirkland, T. N. (2001) MD-2 binds to bacterial lipopolysaccharide. J. Biol. Chem. 276, 38044-38051
  32. Inohara, N. and Nuñez, G. (2002) ML -- a conserved domain involved in innate immunity and lipid metabolism. Trends. Biochem. Sci 27, 219-221 https://doi.org/10.1016/S0968-0004(02)02084-4
  33. Raetz, C. R. and Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635-700 https://doi.org/10.1146/annurev.biochem.71.110601.135414
  34. Miyake, K. (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin. Res. 12, 195-204 https://doi.org/10.1179/096805106X118807
  35. Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K. and Akira, S. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933-940 https://doi.org/10.1093/intimm/13.7.933
  36. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. and Akira, S. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14 https://doi.org/10.4049/jimmunol.169.1.10
  37. Chambaud, I., Wróblewski, H. and Blanchard, A. (1999) Interactions between mycoplasma lipoproteins and the host immune system. Trends. Microbiol. 7, 493-499 https://doi.org/10.1016/S0966-842X(99)01641-8
  38. Deininger, S., Stadelmaier, A., von Aulock, S., Morath, S., Schmidt, R. R. and Hartung, T. (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170, 4134-4138 https://doi.org/10.4049/jimmunol.170.8.4134
  39. Hashimoto, M., Furuyashiki, M., Kaseya, R., Fukada, Y., Akimaru, M., Aoyama, K., Okuno, T., Tamura, T., Kirikae, T., Kirikae, F., Eiraku, N., Morioka, H., Fujimoto, Y., Fukase, K., Takashige, K., Moriya, Y., Kusumoto, S. and Suda, Y. (2007) Evidence of immunostimulating lipoprotein existing in the natural lipoteichoic acid fraction. Infect. Immun. 75, 1926-1932 https://doi.org/10.1128/IAI.02083-05
  40. Morath, S., von Aulock, S. and Hartung, T. (2005) Structure/function relationships of lipoteichoic acids. J. Endotoxin. Res. 11, 348-356 https://doi.org/10.1177/09680519050110061001

Cited by

  1. Crystal structure of an engineered YopM-InlB hybrid protein vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6807-14-12
  2. Activating immunity: lessons from the TLRs and NLRs vol.34, pp.11, 2009, https://doi.org/10.1016/j.tibs.2009.06.011
  3. Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex vol.21, pp.10, 2012, https://doi.org/10.1002/pro.2142
  4. Liesegang-like patterns of Toll crystals grown in gel vol.46, pp.2, 2013, https://doi.org/10.1107/S0021889812051606
  5. Crystal structure of the C-terminal domain of mouse TLR9 vol.82, pp.10, 2014, https://doi.org/10.1002/prot.24616
  6. Fusion-protein-assisted protein crystallization vol.71, pp.7, 2015, https://doi.org/10.1107/S2053230X15011061
  7. An unusual dimeric structure and assembly for TLR4 regulator RP105–MD-1 vol.18, pp.9, 2011, https://doi.org/10.1038/nsmb.2106
  8. Mice, men and the relatives: cross-species studies underpin innate immunity vol.2, pp.4, 2012, https://doi.org/10.1098/rsob.120015
  9. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin vol.122, pp.8, 2017, https://doi.org/10.1002/2017JB014216
  10. Comprehensive modeling and functional analysis of Toll-like receptor ligand-recognition domains 2010, https://doi.org/10.1002/pro.333
  11. Recombinant expression of TLR5 proteins by ligand supplementation and a leucine-rich repeat hybrid technique vol.427, pp.1, 2012, https://doi.org/10.1016/j.bbrc.2012.09.021
  12. Multi-Host Expression System for Recombinant Production of Challenging Proteins vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068674
  13. Variation matters: TLR structure and species-specific pathogen recognition vol.30, pp.3, 2009, https://doi.org/10.1016/j.it.2008.12.001