DOI QR코드

DOI QR Code

Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana

  • Zhu, Bo (College of Horticulture, Nanjing Agricultural University) ;
  • Xiong, Ai-Sheng (Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences) ;
  • Peng, Ri-He (Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences) ;
  • Xu, Jing (College of Horticulture, Nanjing Agricultural University) ;
  • Zhou, Jun (College of Horticulture, Nanjing Agricultural University) ;
  • Xu, Jin-Tao (College of Horticulture, Nanjing Agricultural University) ;
  • Jin, Xiao-Fen (Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences) ;
  • Zhang, Yang (Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences) ;
  • Hou, Xi-Lin (College of Horticulture, Nanjing Agricultural University) ;
  • Yao, Quan-Hong (Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences)
  • Published : 2008.05.31

Abstract

It is known that the stable protein 1 (SP1) detected in aspen plants remains soluble upon boiling and that sp1 expression in transgenic aspen is resistant to salt stress. Presently, we analyzed the effect of expression of SP1 in Arabidopsis thaliana plants and their response to high temperature stress. After $45^{\circ}C$ for 16 h, relative to wild type plants, sp1 transgenic plants exhibited stronger growth and were better in several physiological properties including chlorophyII, chlorophyII fluorescence, water content, proline content, and malondialdehyde content. These preliminarily results suggest that the over-expression of SP1 may notably enhance heat-tolerant level of transgenic A. thaliana plants.

Keywords

References

  1. Bray, E.A., Bailey, S.J. and Weretilnyk, E. (2000) Responses to abiotic stresses; in Biochemistry and molecular biology of plants, Gruissem, W., Buchannan, B. and Jones, R.(eds.) American Society of Plant Physiologists, Rockville, MD., pp1158-1249
  2. Frova, C. (1997) Genetics dissection of thermotolerance in maize; in Physical stress in plants, Grillo, S. and Leone, A. (eds.) Springer-Verlag, New York., pp 31-38.
  3. Lester, W.Y, Ron, W.W. and Peta, B.S. (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485-495 https://doi.org/10.1093/jxb/erh038
  4. Par, K. I. (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 169, 945-953 https://doi.org/10.1534/genetics.104.034959
  5. Wang, W.X., Pelah, D., Alergand, T., Shoseyov, O. and Altman, A. (2002) Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen (Populus tremula L.). Plant Physiol. 130, 865-875 https://doi.org/10.1104/pp.002436
  6. Wang, W.X., Pelah, D., Alergand, T., Shoseyov, O. and Altman, A. (2001) Denaturate stable and/or protease resistant, chaperonelike oligomeric proteins, polynucleotides encoding same and their uses. Provisional Patent Application 60272-771, USA
  7. Dgany, O., Gonzalez, A., Sofer, O., Wang, W.W., Zolotnitsky, G., Wolf, A., Shoham, Y., Altman, A., Sharon, G. W., Shoseyov, O. and Almog, O. (2004) The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J. Biol. Chem. 279, 51516-51523 https://doi.org/10.1074/jbc.M409952200
  8. Altman, A. (2003) From plant tissue culture to biotechnology: Scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell. Dev. Biol. Plant 39, 75-84 https://doi.org/10.1079/IVP2002379
  9. Xiong, A.S., Yao, Q.H., Peng, R.H., Li, X., Fan, H.Q., Cheng, Z.M. and Li, Y. (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence. Nucleic Acids. Res. 32, e98 https://doi.org/10.1093/nar/gnh094
  10. Zhang, X., Henriques, R. and Lin, S.S. (2006) Agrobacteriummediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641-646 https://doi.org/10.1038/nprot.2006.97
  11. Xiong, A.S., Yao, Q.H., Peng, R.H., Duan, H., Li, X., Fan, H.Q., Cheng, Z.M., and Li Y. (2006) PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 1, 791-797 https://doi.org/10.1038/nprot.2006.103
  12. Peng, R.H., Xiong, A.S. and Yao, Q.H. (2006) A direct and efficient PAGE-mediated overlap extension method for gene multiple-site mutagenesis. Appl. Microbiol. Biotechnol. 73, 234-240 https://doi.org/10.1007/s00253-006-0583-3
  13. Neil, R.B. and Rosenqvist, E. (2004) Applications of chlorophyII fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 403, 1607-1621
  14. Chen, M.Q., Wei, H.B., Cao, J.W., Liu, R.J., Wang, Y.L. and Zheng, C.Y. (2007) Expression of bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J. Biochem. Mol. Biol. 40, 396-403 https://doi.org/10.5483/BMBRep.2007.40.3.396
  15. Esterbauer, H., Schauer, R.J. and Zololner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic. Biol. Med. 11, 81-128 https://doi.org/10.1016/0891-5849(91)90192-6
  16. Maxwell, K. and Johnson, G. N. (2000) ChlorophyII fluorescence- a practical guide. J. Exp. Bot. 345, 659-668
  17. Zoran, R., Urska, B. and Prasad, P.V. (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyII in winter wheat under heat stress. Crop Sci. 47, 2067-2073 https://doi.org/10.2135/cropsci2006.10.0674
  18. He, Y.L., Liu, Y.L., Cao, W.X., Huai, M.F., Xu, B.G. and Huang, B.R.(2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky Bluegrass. Crop Sci. 45, 988-995 https://doi.org/10.2135/cropsci2003.0678
  19. Voetberg, G.S. and Sharp, R.E. (1991) Growth of the maize primary root at low water potentials III. roles of increased proline deposition in osmotic adjustment. Plant Physiol. 96, 1125-1130 https://doi.org/10.1104/pp.96.4.1125
  20. Chen, N.Z., Zhang, X.Q., Wei, P.C., Chen, Q.J., Ren, F., Chen, J. and Wang, X.C. (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J. Biochem. Mol. Biol. 40, 1083-1089 https://doi.org/10.5483/BMBRep.2007.40.6.1083
  21. Skriver, K. and Mundy, J. (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503-512 https://doi.org/10.1105/tpc.2.6.503
  22. Tran, L.S., Nakashima, K., Shinozaki, K. and Yamaguchi, S. K. (2007) Plant gene networks in osmotic stress response: from genes to regulatory networks. Methods Enzymol. 428, 109-128 https://doi.org/10.1016/S0076-6879(07)28006-1
  23. Kavi, P.B., Hong, Z. and Miao, G.H. (1995) Over-expression of delta11-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387-1394 https://doi.org/10.1104/pp.108.4.1387
  24. Smirnoff, N. (1995) Antioxidant systems and plant response to the environment; in Environment and plant metabolism: flexibility and acclimation, Smirnoff, N. (eds.) Bios Scientific Publishers, Oxford, UK., pp. 217-243.
  25. Gong, M.S., Chen, Y.S. and Li Z. (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. J. Plant Physiol. 24, 371-379
  26. Monk, L.S., Fagerstedt, K.V. and Crawford, R.M.M. (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Plant Physiol. 76, 456-459 https://doi.org/10.1104/pp.76.2.456
  27. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  28. Lichtenthaler, H.K. (1987) ChlorophyIIs and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  29. Tarantino, D., Vianelli, A., Carraro, L. and Soave, C. (1999) A nuclear mutant of Arabidopsis thaliana selected for enhanced sensitivity to light-chill stress is altered in PSII electron transport activity. Plant Physiol. 107, 361-371 https://doi.org/10.1034/j.1399-3054.1999.100314.x
  30. Bates, L.S., Waldren, R.P. and Teare, I.D. (1973) Rapid determination of free proline in water-stress studies. Plant and Soil 39, 205-207 https://doi.org/10.1007/BF00018060
  31. Havaux, M., Lutz, C. and Grimm, B. (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol. 132, 300-310 https://doi.org/10.1104/pp.102.017178
  32. Ayantika, G., Kasturi, S. and Parames, C. S. (2006) Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder. J. Biochem. Mol. Biol. 39, 197-207 https://doi.org/10.5483/BMBRep.2006.39.2.197

Cited by

  1. Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis vol.38, pp.1, 2011, https://doi.org/10.1007/s11033-010-0096-0
  2. Generating high temperature tolerant transgenic plants: Achievements and challenges vol.205-206, 2013, https://doi.org/10.1016/j.plantsci.2013.01.005
  3. Photosynthesis under stressful environments: An overview vol.51, pp.2, 2013, https://doi.org/10.1007/s11099-013-0021-6
  4. Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis vol.37, pp.2, 2010, https://doi.org/10.1007/s11033-009-9759-0
  5. The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis vol.106, pp.2, 2011, https://doi.org/10.1007/s11240-010-9912-4
  6. A WRKY transcription factor from Malus domestica negatively regulates dehydration stress in transgenic Arabidopsis vol.36, pp.2, 2014, https://doi.org/10.1007/s11738-013-1434-3
  7. VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis 2017, https://doi.org/10.1007/s11816-017-0452-9
  8. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance vol.2, pp.1, 2016, https://doi.org/10.1080/23311932.2015.1134380