DOI QR코드

DOI QR Code

Apoptosis-inducing effect and structural basis of Polygonatum cyrtonema lectin and chemical modification properties on its mannose-binding sites

  • Liu, Bo (College of Life Sciences, Sichuan University) ;
  • Xu, Xiao-Chao (College of Life Sciences, Sichuan University) ;
  • Cheng, Yan (China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University) ;
  • Huang, Jian (School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University) ;
  • Liu, Yan-Hong (College of Life Sciences, Sichuan University) ;
  • Liu, Zhen (College of Life Sciences, Sichuan University) ;
  • Min, Ming-Wei (College of Life Sciences, Sichuan University) ;
  • Bian, He-Jiao (College of Life Sciences, Sichuan University) ;
  • Che, Jing (College of Life Sciences, Sichuan University) ;
  • Bao, Jin-Ku (College of Life Sciences, Sichuan University)
  • Published : 2008.05.31

Abstract

Polygonatum cyrtonema Lectin (PCL), which is classified as a monocot mannose-binding lectin, has received great regards for its uniquely biological activities and potentially medical applications in cancer cells. This paper was initially aimed to study apoptosis of PCL on Hela cells. Thus, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method was carried out. Through observation of cell morphologic changes and Lactate dehydrogenase (LDH) activity-based cytotoxicity assays, PCL induced HeLa cell apoptosis in a dose-dependent manner. To further gain structural basis, multiple alignments, homology modeling and docking experiments were performed to analyze the correlation between its biological activities and mannose-binding sites. Eventually, considering docking data, chemical modification properties on the three mannose-binding sites were analyzed by a series of biological experiments (e.g., hemagglutinating and mitogenic activity assays, fluorescence and Circular Dichrosim (CD) spectroscopy) to profoundly identify the role of some key amino acids in the structure-function relationship of PCL.

Keywords

References

  1. Wang, H. X., Ng, T. B. and Ooi, V. E. C. (1999) Studies on purification of a lectin from fruiting bodies of the edible mushroom Lentinus edodes. Int. J. Biochem. Cell Biol. 31, 595-599 https://doi.org/10.1016/S1357-2725(99)00006-0
  2. Broekaert, W. F., Van Parijis, J., Leyns, F., Joos, H. and Peumans, W. J. (1989) Peumans, A chitin-binding. lectin from stinging nettle rhizomes with antifungal properties. Science 245, 1100-1102 https://doi.org/10.1126/science.245.4922.1100
  3. Yan, Q., Jiang, Z., Yang, S., Deng W. and Han, L. (2005) A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Arch. Biochem. Biophys. 442, 72-81 https://doi.org/10.1016/j.abb.2005.07.019
  4. Liu, J., Xu, X., Liu, J., Balzarini, J., Luo, Y., Kong, Y., Li, J., Chen, F., Van Damme, E. and Bao, J. (2007) A novel tetrameric lectin from Lycoris aurea with mannose binding sites per monomer. Acta Biochim. Pol. 54, 159-166
  5. Haselbeck, A., Schickaneder, E., Vondereltz, H. and Hosel, W. (1990) Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labeled lectins on blots. Anal. Biochem. 191, 25-30 https://doi.org/10.1016/0003-2697(90)90381-I
  6. Saito, K., Komae, A., Kakuta, M., Van Damme, E. J., Peumans, W. J., Goldstein, I. J. and Misaki, A. (1993) The alpha-mannosyl-binding lectin from leaves of the orchid twayblade (Listera ovata). Application to separation of a-D-mannans from a-D-glucans. Eur. J. Biochem. 217, 677-681 https://doi.org/10.1111/j.1432-1033.1993.tb18293.x
  7. Bao, J. K., Zeng, Z. K. and Zhou, H. (1996) Study on molecular stability and biological activity of Polygonatum cyrtomema Hua lectin II. Chin. Biochem. J. 12, 747-749
  8. Verheij, H. M., Egmond, M. R. and de Haas, G. H. (1981) Chemical modification of the ${\alpha}-amino$ group in snake venom phospholipases A2. A comparison of the interaction of pancreatic and venom phospholipases with lipid-water interfaces. Biochemistry 20, 94-99 https://doi.org/10.1021/bi00504a016
  9. Bao, J. K., Mo, S. W., Zeng, Z. K. and Zhou, H. (1999) The effect of Polygonatum cyrtomema Hua. lectin II on calcium transmembrane influx induced by norepinephrine and KCl in smooth muscle cell of rat aorta. J. Sichuan University (Natural Science Edition) 36, 350-353
  10. Jeong, S. Y. and Seol, D. W. (2008) The role of mitochondria in apoptosis. BMB Rep. 41, 11-22 https://doi.org/10.5483/BMBRep.2008.41.1.011
  11. Han, S. I., Kim, Y. S. and Kim ,T. H. (2008) Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10 https://doi.org/10.5483/BMBRep.2008.41.1.001
  12. Kim, M. S., Lee, J., Lee, K. M., Yang, S. H., Choi, S., Chung, S. Y., Kim, T. Y., Jeong, W. H. and Park, R. (2003) Involvement of hydrogen peroxide in mistletoe lectin-II-induced apoptosis of myeloleukemia U937 cells. Life Sci. 73, 1231-1243 https://doi.org/10.1016/S0024-3205(03)00418-1
  13. An, J., Liu, J. Z., Wu, C. F., Li, J., Dai, L., Van Damme, E., Balzarini, J., De Clercq, E., Chen, F. and Bao, J. K. (2006) Anti-HIV I/II Activity and Molecular Cloning of a Novel Mannose/Sialic Acid-binding Lectin from Rhizome of Polygonatum cyrtonema Hua. Acta Biochim. Biophys. Sin. 38, 70-78 https://doi.org/10.1111/j.1745-7270.2006.00140.x
  14. Bao, J. K., Zeng, Z. K. and Zhou, H. (1996) Purification and characterization Polygonatum cyrtomema Hua lectin II. Chin. Biochem. J. 12, 165-170
  15. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  16. Gu, Q. L., Shen, B. H. and Li, L. N. (1998) The primary study on apoptosis in cancer cell of stomach induced by oxidative arsenic. J. China assimilation 18, 69-71
  17. Li, D., Wu, L. J., Tashiro, S., Onodera, S. and Ikejima, T. (2007) Oridonin inhibited the tyrosine kinase activity and induced apoptosis in human epidermoid carcinoma A431 cells. Biol. Pharm. Bull. 30, 254-260 https://doi.org/10.1248/bpb.30.254
  18. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723 https://doi.org/10.1002/elps.1150181505
  19. Hester, G., Kaku, H., Goldstein, I. J. and Wright, C. S. (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat. Struct. Biol. 2, 472-479 https://doi.org/10.1038/nsb0695-472
  20. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hert, W. E., Belew, R. K. and Olson, A. J. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639-1662 https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  21. Liao, T. H., Ting, R. S. and Yeung, J. E. (1982) Reactivity of tyrosine in bovine pancreatic deoxyribonuclease with p-nitrobenzenesulfonyl fluoride. J. Biol. Chem. 257, 5637-5644
  22. Itoh, M., Kondo, K. and Komada, H. (1980) Purification and characterization of a lectin from Phaseolus vulgaris seed. Agric. Biol. Chem. 44, 125 https://doi.org/10.1271/bbb1961.44.125
  23. Latsuo, M., Huang, C. H. and Huang, L. C. (1980) Modification and identification of glutamate residues at the arginine recognition site in the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Biochem. J. 187, 371-379 https://doi.org/10.1042/bj1870371
  24. Riordan, J. F., Wacker, W. E. C. and Vallee, B. L. (1965) N-Acetylinidazole: a reagent for determination of "free" tylosyl residues of proteins. Biochemistry 4, 1758-1765 https://doi.org/10.1021/bi00885a012
  25. Fleer, E. A., Verbeij, H. M. and de Haas, G. H. (1981) Modification of carboxylate groups in bovine pancreatic phospholipase A2. Identification of aspartate-49 as Ca2+- binding ligand. Eur. J. Biochem. 113, 283-288 https://doi.org/10.1111/j.1432-1033.1981.tb05064.x
  26. Luo, Y., Xu, X., Liu, J., Li, J., Sun, Y., Liu, Z., Liu, J., Van Damme, E., Balzarini, J. and Bao, J. (2007) A novel mannose- binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J. Biochem. Mol. Boil. 40, 358-367 https://doi.org/10.5483/BMBRep.2007.40.3.358
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  28. Wang, H. X., Liu, W. K., Ng, T. B., Ooi, V. E. and Chang, S. T. (1996) The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 31, 205-211 https://doi.org/10.1016/0162-3109(95)00049-6

Cited by

  1. Plant lectins: Targeting programmed cell death pathways as antitumor agents vol.43, pp.10, 2011, https://doi.org/10.1016/j.biocel.2011.07.004
  2. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy vol.48, pp.1, 2015, https://doi.org/10.1111/cpr.12155
  3. Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities vol.18, pp.8-9, 2011, https://doi.org/10.1016/j.phymed.2010.11.001
  4. Molecular mechanisms ofLycoris aureaagglutinin-induced apoptosis and G2/M cell cycle arrest in human lung adenocarcinoma A549 cells, bothin vitroandin vivo vol.46, pp.3, 2013, https://doi.org/10.1111/cpr.12034
  5. Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis via a caspase-dependent pathway as compared to Ophiopogon japonicus lectin vol.18, pp.1, 2010, https://doi.org/10.1016/j.phymed.2010.05.013
  6. A novel sialic acid-specific lectin from Phaseolus coccineus seeds with potent antineoplastic and antifungal activities vol.16, pp.4, 2009, https://doi.org/10.1016/j.phymed.2008.07.003
  7. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38-nuclear factor-kappa B survival pathways in oridonin-treated murine fibrosarcoma L929 cells vol.276, pp.5, 2009, https://doi.org/10.1111/j.1742-4658.2008.06864.x
  8. Galactose Recognition by a Tetrameric C-type Lectin, CEL-IV, Containing the EPN Carbohydrate Recognition Motif vol.286, pp.12, 2011, https://doi.org/10.1074/jbc.M110.200576
  9. Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells vol.96, pp.2, 2014, https://doi.org/10.1016/j.rvsc.2014.01.005
  10. Purification, characterization and molecular cloning of a novel mannose-binding lectin from rhizomes of Ophiopogon japonicus with antiviral and antifungal activities vol.175, pp.6, 2008, https://doi.org/10.1016/j.plantsci.2008.09.008
  11. Transgenic Tobacco Expressing Zephyranthes grandiflora Agglutinin Confers Enhanced Resistance to Aphids vol.158, pp.3, 2009, https://doi.org/10.1007/s12010-008-8418-6
  12. Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities vol.16, pp.6-7, 2009, https://doi.org/10.1016/j.phymed.2008.12.010
  13. ERK and JNK mediate TNFα-induced p53 activation in apoptotic and autophagic L929 cell death vol.376, pp.3, 2008, https://doi.org/10.1016/j.bbrc.2008.09.018
  14. In vitro plantlet regeneration system from rhizomes and mannose-binding lectin analysis of Polygonatum cyrtonema Hua. vol.99, pp.3, 2009, https://doi.org/10.1007/s11240-009-9600-4
  15. Recombinant expression of Polygonatum cyrtonema lectin with anti-viral, apoptosis-inducing activities and preliminary crystallization vol.46, pp.2, 2011, https://doi.org/10.1016/j.procbio.2010.10.005
  16. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway vol.275, pp.1, 2009, https://doi.org/10.1016/j.canlet.2008.09.042
  17. Chemopreventive role of food-derived proteins and peptides: A review vol.57, pp.11, 2017, https://doi.org/10.1080/10408398.2015.1057632
  18. Role of reactive oxygen species-mediated MAPK and NF-κB activation inpolygonatum cyrtonemalectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells vol.160, pp.6, 2016, https://doi.org/10.1093/jb/mvw040
  19. Polygonatum cyrtonema lectin, a potential antineoplastic drug targeting programmed cell death pathways vol.406, pp.4, 2011, https://doi.org/10.1016/j.bbrc.2011.02.049
  20. In Silico and Experimental Studies of Concanavalin A: Insights into Its Antiproliferative Activity and Apoptotic Mechanism vol.162, pp.1, 2010, https://doi.org/10.1007/s12010-009-8694-9
  21. Cytotoxic and Antiproliferative Effect of Tepary Bean Lectins on C33-A, MCF-7, SKNSH, and SW480 Cell Lines vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19079610
  22. Molecular modeling, docking and dynamics simulations of GNA-related lectins for potential prevention of influenza virus (H1N1) vol.18, pp.1, 2012, https://doi.org/10.1007/s00894-011-1022-7
  23. Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways vol.92, pp.12, 2010, https://doi.org/10.1016/j.biochi.2010.08.009
  24. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins vol.30, pp.3, 2013, https://doi.org/10.1007/s10719-012-9440-z
  25. Plant lectins: Potential antineoplastic drugs from bench to clinic vol.287, pp.1, 2010, https://doi.org/10.1016/j.canlet.2009.05.013
  26. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities vol.30, pp.10, 2009, https://doi.org/10.1016/j.peptides.2009.06.027
  27. Antiproliferative activity and apoptosis-inducing mechanism of Concanavalin A on human melanoma A375 cells vol.482, pp.1-2, 2009, https://doi.org/10.1016/j.abb.2008.12.003
  28. Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models vol.58, pp.1, 2013, https://doi.org/10.1128/AAC.01407-13