Synthesis of Poly(styrene-co-alkyl methacylate)s for Pour Point Depressants of Diesel containing Biodiesel

바이오디젤을 함유한 경유용 저온유동성 향상제의 합성: 폴리(스티렌-co-알킬 메타크릴레이트)

  • Yang, Young-Do (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Kim, Young-Wun (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Chung, Keun-Wo (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Hwang, Do-Huak (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Hong, Min-Hyeuk (New Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT)
  • 양영도 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 김영운 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 정근우 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 황도혁 (한국화학연구원 신화학연구단 바이오정밀화학연구센터) ;
  • 홍민혁 (한국화학연구원 신화학연구단 바이오정밀화학연구센터)
  • Received : 2008.05.15
  • Accepted : 2008.07.22
  • Published : 2008.10.10

Abstract

A variety of techniques has been employed in order to reduce problems caused by the crystallization of paraffin and saturated fatty acid esters in diesel fuel containing biodiesels. Methacrylate copolymers are known as additives which reduce the pour point and cold filtering plugging point (CFPP) of diesel fuels. This paper describes the synthesis, characterization and low temperature properties, having as an initial step the synthesis of the alkyl methacrylate monomers by esterification of methacrylic acid with C12, C18, and C22 fatty alcohols. The copolymerization of these monomers with styrene was then performed, with molar ratios of 30:70, 50:50 and 70:30 for styrene:alkyl methacrylate. All copolymers were characterized by $^1H-NMR$, FT-IR, and gel permeation chromatography (GPC). The poly(styrene-co-alkyl methacrylate)s (PStmSMAn) leads to a large reduction in the pour point and CFPP of poly(styrene-co-alkyl methacrylate) in ultra low sulfur diesel (ULSD) and BD5 with treated 100~5000 ppm of poly(styrene-co-alkyl methacrylate). BD5 fuel containing 5000 ppm of the copolymer (PSt82SMA18) showed a $25^{\circ}C$ and $9^{\circ}C$ reduction in their pour points and CFPP, respectively.

디젤 및 바이오디젤의 구성 성분 중에 포함된 n-파라핀과 포화 지방산 메틸에스테르가 저온에서 결정화되는 것을 방지하기 위하여 여러 가지 기술들이 알려져 있다. 그 중에서 메타크릴레이트 공중합체가 디젤의 유동점과 저온필터막힘점을 낮출 수 있는 효과적인 저온유동성 향상제로 알려져 있다. 본 논문에서는 C12, C18 및 C22 지방 알콜과 메타크릴산의 에스테르화 반응에 의하여 알킬 메타크릴레이트 단량체를 합성하여 스티렌과 30:70, 50:50 및 70:30의 몰 비율로 라디칼 공중합체를 합성하였다. 합성한 공중합체의 구조를 $^1H-NMR$ 및 FT-IR 스펙트럼으로 분석하였으며 GPC로 분자량을 측정하였다. 디젤 및 바이오디젤을 5% 함유한 경유(BD5)에 100~5000 ppm의 공중합체를 첨가하여 유동점 및 CFPP 등의 저온 유동성을 평가하였다. 저온 유동성을 평가한 결과, 스티렌-스테아릴 메타크릴레이트 공중합체(PStmSMAn)의 저온 유동성이 다른 공중합체에 비하여 우수하였으며 특히, PSt82SMA18 공중합체 5000 ppm을 함유한 BD5의 유동점이 첨가 전에 비해 $25^{\circ}C$, CFPP $9^{\circ}C$ 강하되는 결과를 나타내었다.

Keywords

References

  1. C. Pierre, J. M. Létoffé, N. Bernard, and D. Bernard, Fuel, 65, 861 (1986) https://doi.org/10.1016/0016-2361(86)90082-7
  2. R. O. Dunn and M. O. Bagby, JAOCS, 72, 895 (1995) https://doi.org/10.1007/BF02542067
  3. J. Zhang, C. Wu, W. Li, Y. Wang, and Z. Han, Fuel, 82, 1419 (2003) https://doi.org/10.1016/S0016-2361(03)00028-0
  4. H. S. Ashbaugh, X. Guo, D. Schwahn, R. K. Prud`homme, D. Richter, and L. J. Fetters, Energy & Fuels, 19, 138 (2005) https://doi.org/10.1021/ef049910i
  5. C. W. Chiu, L. G. Schimacher, and G. J. Suppes, Biomass and Bioenergy, 27, 485 (2004)
  6. B. Arun, C. Narayan, R. K. Laskar, K. V. Mazumdar, and B. S. Rao, J. Chem. Techn. & Biotechn., 62, 75 (1994)
  7. R. O. Dunn, M. W. Shockley, and M. O. Bagby, JAOCS, 73, 1719 (1996) https://doi.org/10.1007/BF02517978
  8. American Society for Testing and Materials, ASTM designation, D97-05, Philadelphia (2005)
  9. American Society for Testing and Materials, ASTM designation, D6371-05, Philadelphia (2005)
  10. R. Vijayaraghavan and D. R. MacFarlane, European Polym. J., 42, 2736 (2006) https://doi.org/10.1016/j.eurpolymj.2006.05.010
  11. U. Nestor, J. Soriano, P. M. Veronica, and M. Matsumura, Fuel, 85, 25 (2006) https://doi.org/10.1016/j.fuel.2005.06.006
  12. W. A. Affens, J. M. Hall, and R. N. Hazlett, Fuel, 63, 543 (1984) https://doi.org/10.1016/0016-2361(84)90294-1
  13. A. Jukic, M. Rogosic, and Z. Tanovic, Ing. Eng. Chem. Res., 46, 3321 (2007) https://doi.org/10.1021/ie060890c
  14. Maria del Carmen Garcia, Energy & Fuels, 14, 1043 (2000) https://doi.org/10.1021/ef0000330
  15. J. Zhang, M. Zhang, J. Wan, and W. Li, J. Phys. Chem. B, 112, 36 (2008) https://doi.org/10.1021/jp073052k
  16. R. Kern and R. Dassonville, J. Crystal Growth, 116, 191 (1992) https://doi.org/10.1016/0022-0248(92)90129-7
  17. D. H. M. Beiny, J. W. Mulln, and K. Lewtas, J. Crystal Growth, 102, 801 (1990) https://doi.org/10.1016/0022-0248(90)90845-C
  18. V. A. Adewusi, Petrol. Sci. Technol., 16, 953 (1998) https://doi.org/10.1080/10916469808949819
  19. Y. Song, T. Ren, X. Fu, and X. Xu, Fuel Processing Technology, 86, 641 (2005) https://doi.org/10.1016/j.fuproc.2004.05.011
  20. R. Berkhof and H. J. Kwekkeboom, Reprint, 3rd Servo Oil Field Chemicals Symposium, Moscow, USSR, October (1985)
  21. Y. H. Gu and B. X. Shen, Energy & Fuels, 20, 1579 (2006) https://doi.org/10.1021/ef050414j
  22. D. H. M. Beiny, J. W. Mullin, and K. Lewtas, J. Crystal Growth, 1002, 801 (1990)