DOI QR코드

DOI QR Code

The role of mitochondria in apoptosis

  • Published : 2008.01.31

Abstract

Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Keywords

References

  1. Chan, D. C. (2006) Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22, 79-99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638
  2. McBride H. M., Neuspiel, M., and Wasiak, S. (2006) Mitochondria: more than just a powerhouse. Curr. Biol. 16, 551-560. https://doi.org/10.1016/j.cub.2006.06.054
  3. Adams, J. M. (2004) Ways of dying: multiple pathways to apoptosis. Genes Dev. 17, 2481-2495. https://doi.org/10.1101/gad.1126903
  4. Camello-Almaraz, C., Gomez-Pinilla, P. J., Pozo, M. J., and Camello, P. J. (2006) Mitochondrial reactive oxygen species and $Ca^{2+}$ signaling. Am. J. Physiol. Cell Physiol. 291, C1082-C1088. https://doi.org/10.1152/ajpcell.00217.2006
  5. De Giorgi, F., Lartigue, L., and Ichas, F. (2000) Electrical coupling and plasticity of the mitochondrial network. Cell Calcium 28, 365-370. https://doi.org/10.1054/ceca.2000.0177
  6. Karbowski, M., and Youle, R. J. (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10, 870-880. https://doi.org/10.1038/sj.cdd.4401260
  7. Cerveny, K. L., Tamura, Y., Zhang, Z., Jensen, R. E., and Sesaki, H. (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563-569. https://doi.org/10.1016/j.tcb.2007.08.006
  8. Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., and Chan, D. C. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189-200. https://doi.org/10.1083/jcb.200211046
  9. Cipolat, S., Martins de Brito, O., Dal, Zilio B., and Scorrano, L. (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 101, 15927-15932. https://doi.org/10.1073/pnas.0407043101
  10. Yoon, Y., Krueger, E. W., Oswald, B. J., and McNiven, M. A. (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell Biol. 23, 5409-5420. https://doi.org/10.1128/MCB.23.15.5409-5420.2003
  11. Smirnova, E., Griparic, L., Shurland, D. L., and van Der Bliek, A. M. (2001) Dynamin-related protein drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256. https://doi.org/10.1091/mbc.12.8.2245
  12. Bossy-Wetzel, E., Barsoum, M. J., Godzik, A., Schwarzenbacher, R., and Lipton, S. A. (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol. 15, 706-716. https://doi.org/10.1016/j.ceb.2003.10.015
  13. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  14. Saikumar, P., Dong, Z., Mikhailov, V., Denton, M., Weinberg, J. M., and Venkatachalam, M. A. (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am. J. Med. 107, 489-506. https://doi.org/10.1016/S0002-9343(99)00259-4
  15. Ferri, K. F., and Kroemer, G. K. (2001) Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3, E255-E263. https://doi.org/10.1038/ncb1101-e255
  16. Green, D. R., and Evan, G. I. (2002) A matter of life and death. Cancer Cell 1, 19-30. https://doi.org/10.1016/S1535-6108(02)00024-7
  17. Green, D. R., and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  18. Green, D. R., and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305, 626-629. https://doi.org/10.1126/science.1099320
  19. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., and Kroemer, G. (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661-1672. https://doi.org/10.1084/jem.181.5.1661
  20. Kelekar, A., and Thompson, C. B. (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324-330. https://doi.org/10.1016/S0962-8924(98)01321-X
  21. Harris, M. H., and Thompson, C. B. (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ. 7, 1182-1191. https://doi.org/10.1038/sj.cdd.4400781
  22. Adams, J. M., and Cory, S. (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61-66. https://doi.org/10.1016/S0968-0004(00)01740-0
  23. Kuwana, T., and Bouchier-Hayes, L. (2005) BH3 Domains of BH3-ony proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525-535. https://doi.org/10.1016/j.molcel.2005.02.003
  24. Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H., and Youle, R. J. (2001) Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell. Biol. 153, 1265-1276. https://doi.org/10.1083/jcb.153.6.1265
  25. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. https://doi.org/10.1016/S0092-8674(00)80085-9
  26. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. https://doi.org/10.1016/S0092-8674(00)00008-8
  27. Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T., and Alnemri, E. S. (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein- caspase interaction. J. Biol. Chem. 277, 432-438. https://doi.org/10.1074/jbc.M109721200
  28. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. https://doi.org/10.1038/17135
  29. Li, L. Y., Luo, X., and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. https://doi.org/10.1038/35083620
  30. Donovan, M., and Cotter, T. G. (2004) Control of mitochondrial integrity by Bcl-2 family members and caspase- independent cell death. Biochim. Biophys. Acta 1644, 133-147. https://doi.org/10.1016/j.bbamcr.2003.08.011
  31. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423-432. https://doi.org/10.1016/S1097-2765(02)00442-2
  32. Baliga, B., and Kumar, S. (2003) Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ. 10, 16-18. https://doi.org/10.1038/sj.cdd.4401166
  33. Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487. https://doi.org/10.1038/20959
  34. Sugiyama, T., Shimizu, S., Matsuoka, Y., Yoneda, Y., and Tsujimoto, Y. (2002) Activation of mitochondrial voltage- dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene 21, 4944-4956. https://doi.org/10.1038/sj.onc.1205621
  35. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. https://doi.org/10.1126/science.1059108
  36. Certo, M., Moore Vdel, G., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A., and Letai, A. (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351-365. https://doi.org/10.1016/j.ccr.2006.03.027
  37. Grinberg, M., Sarig, R., Zaltsman, Y., Frumkin, D., Grammatikakis, N., Reuveny, E., and Gross, A. (2002) tBID homooligomerizes in the mitochondrial membrane to induce apoptosis. J. Biol. Chem. 77, 12237-12245.
  38. Crompton, M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249. https://doi.org/10.1042/0264-6021:3410233
  39. van Gurp, M., Festjens, N., van Loo, G., Saelens, X., and Vandenabeele, P. (2003) Mitochondrial intermembrane proteins in cell death. Biochem. Biophys. Res. Commun. 304, 487-497. https://doi.org/10.1016/S0006-291X(03)00621-1
  40. Takahashi, Y., Karbowski, M., Yamaguchi, H., Kazi, A., Wu, J., Sebti, S. M., Youle, R. J., and Wang, H. G. (2005) Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol. Cell Biol. 25, 9369-9382. https://doi.org/10.1128/MCB.25.21.9369-9382.2005
  41. Cuddeback, S. M., Yamaguchi, H., Komatsu, K., Miyashita, T., Yamada, M., Wu, C., Singh, S., and Wang, H. G. (2001) Molecular cloning and characterization of Bif-1: a novel SH3 domain-containing protein that associates with Bax. J. Biol. Chem. 276, 20559-20565. https://doi.org/10.1074/jbc.M101527200
  42. Giacomello, M., Drago, I., Pizzo, P., and Pozzan, T. (2007) Mitochondrial $Ca^{2+}$ as a key regulator of cell life and death. Cell Death Differ. 14, 1267-1274. https://doi.org/10.1038/sj.cdd.4402147
  43. Nicotera, P., and Orrenius, S. (1998) The role of calcium in apoptosis. Cell Calcium 23, 173-180. https://doi.org/10.1016/S0143-4160(98)90116-6
  44. Hajnoczky, G., Csordas, G., Das, S., Garcia-Perez, C., Saotome, M., Sinha Roy, S., and Yi, M. (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial $Ca^{2+}$ uptake in apoptosis. Cell Calcium 4, 553-560.
  45. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial $Ca^{2+}$ responses. Science 280, 1763-1766. https://doi.org/10.1126/science.280.5370.1763
  46. Pizzo, P., and Pozzan, T. (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 17, 6-12. https://doi.org/10.1016/j.tcb.2006.11.001
  47. Borgese, N., Francolini, M., and Snapp, E. (2006) Endoplasmic reticulum architecture: structures in flux. Curr. Opin. Cell Biol. 18, 358-364. https://doi.org/10.1016/j.ceb.2006.06.008
  48. Oakes, S. A., Opferman, J. T., Pozzan, T., Korsmeyer, S. J., and Scorrano, L. (2003) Regulation of endoplasmic reticulum $Ca^{2+}$ dynamics by proapoptotic BCL-2 family members. Biochem. Pharm. 66, 335-1340.
  49. Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., and Korsmeyer, S. J. (2003) BAX and BAK regulation of endoplasmic reticulum $Ca^{2+}$ : a control point for apoptosis. Science 300, 135-139. https://doi.org/10.1126/science.1081208
  50. Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di, V. F., Pozzan, T., and Rizzuto, R. (2000) Reduced loading of intracellular $Ca^{2+}$ stores and down-regulation of capacitative $Ca^{2+}$ influx in Bcl-2-overexpressing cells. J. Cell Biol. 148, 857-862. https://doi.org/10.1083/jcb.148.5.857
  51. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21. https://doi.org/10.1038/35036035
  52. Bathori, G., Csordas, G., Garcia-Perez, C., Davies, E., and Hajnoczky, G. (2006) $Ca^{2+}-dependent$ control of the permeability properties of the mitochondrial outer membrane and VDAC. J. Biol. Chem. 23, 17347-17358.
  53. Zamzami, N., and Kroemer, G. (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol. 2, 67-71 https://doi.org/10.1038/35048073
  54. Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A., and Bernardi, P. (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 13, 18558-18561.
  55. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Microdomains with high $Ca^{2+}$ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744-747. https://doi.org/10.1126/science.8235595
  56. Germain, M., Mathai, J. P., McBride, H. M., and Shore, G. C. (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546-1556. https://doi.org/10.1038/sj.emboj.7600592
  57. Mathai, J. P., Germain, M., and Shore, G. C. (2005) BH3-only BIK regulates BAX, BAK-dependent release of $Ca^{2+}$ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J. Biol. Chem. 280, 23829-23836. https://doi.org/10.1074/jbc.M500800200
  58. Szabadkai, G., Simoni, A. M., Chami, M., Wieckowski, M. R., Youle, R. J., and Rizzuto, R. (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca(2+) waves and protects against Ca(2+)- mediated apoptosis. Mol. Cell 16, 59-68. https://doi.org/10.1016/j.molcel.2004.09.026
  59. Kong, D., Xu, L., Yu, Y., Zhu, W., Andrews, D. W., Yoon, Y., and Kuo, T. H. (2005) Regulation of $Ca^{2+}-induced$ permeability transition by Bcl-2 is antagonized by Drpl and hFis1. Mol. Cell Biochem. 272, 187-199. https://doi.org/10.1007/s11010-005-7323-3
  60. Breckenridge, D. G., Stojanovic, M., Marcellus, R. C., and Shore, G. C. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160, 1115-1127. https://doi.org/10.1083/jcb.200212059
  61. Bereiter-Hahn, J., and Voth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Technol. 27, 198-219. https://doi.org/10.1002/jemt.1070270303
  62. Chan, D. C. (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252. https://doi.org/10.1016/j.cell.2006.06.010
  63. Hales, K. G. (2004) The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion 4, 285-308. https://doi.org/10.1016/j.mito.2004.05.007
  64. Heath-Engel, H. M., and Shore, G. C. (2006) Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim. Biophys. Acta 1763, 549-560. https://doi.org/10.1016/j.bbamcr.2006.02.006
  65. Nakada, K., Inoue, K., Ono, T., Isobe, K., Ogura, A., Goto, Y. I., Nonaka, I., and Hayashi, J. I. (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7, 934-940. https://doi.org/10.1038/90976
  66. Chen, H., and Chan, D. C. (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14, R283-R289. https://doi.org/10.1093/hmg/ddi270
  67. Detmer, S. A., and Chan, D. C. (2007) Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879. https://doi.org/10.1038/nrm2275
  68. Ishihara, N., Eura, Y., and Mihara, K. (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535-6546. https://doi.org/10.1242/jcs.01565
  69. Olichon, A., Emorine, L. J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C. P., Ducommun, B., Lenaers, G., and Belenguer, P. (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171-176. https://doi.org/10.1016/S0014-5793(02)02985-X
  70. Karbowski, M., Jeong, S. Y., and Youle, R. J. (2004) Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027-1039. https://doi.org/10.1083/jcb.200407046
  71. Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 118, 3049-3059. https://doi.org/10.1242/jcs.02415
  72. Niemann, A., Ruegg, M., La Padula, V., Schenone, A., and Suter, U. (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J. Cell Biol. 170, 1067-1078. https://doi.org/10.1083/jcb.200507087
  73. Mukamel, Z., and Kimchi, A. (2004) Death-associated protein 3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. J. Biol. Chem. 279, 36732-36738. https://doi.org/10.1074/jbc.M400041200
  74. Perfettini, J. L., Roumier, T., and Kroemer, G. (2005) Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 15, 179-183. https://doi.org/10.1016/j.tcb.2005.02.005
  75. Okamoto K., and Shaw J.M. (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503-536. https://doi.org/10.1146/annurev.genet.38.072902.093019
  76. Zhang, Y., and Chan, D. C. (2007) New insights into mitochondrial fusion. FEBS Lett. 581, 2168-2173. https://doi.org/10.1016/j.febslet.2007.01.095
  77. Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743-7746. https://doi.org/10.1074/jbc.C200677200
  78. Pellegrini, L., and Scorrano, L. (2007) A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death. Differ. 14, 1275-1284. https://doi.org/10.1038/sj.cdd.4402145
  79. Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343-4354. https://doi.org/10.1091/mbc.E02-06-0330
  80. Youle, R. J., and Karbowski, M. (2005) Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6, 657-663. https://doi.org/10.1038/nrm1697
  81. Cereghetti, G. M., and Scorrano, L. (2006) The many shapes of mitochondrial death. Oncogene 25, 4717-4724. https://doi.org/10.1038/sj.onc.1209605
  82. Cheung, E. C., McBride, H. M., and Slack, R. S. (2007) Mitochondrial dynamics in the regulation of neuronal cell death. Apoptosis 12, 979-992. https://doi.org/10.1007/s10495-007-0745-5
  83. Yu, T., Fox, R. J., Burwell, L. S., and Yoon, Y. (2005) Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J. Cell Sci. 118, 4141-4151. https://doi.org/10.1242/jcs.02537
  84. Zhang, Y., and Chan, D. C. (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc. Natl. Acad. Sci. USA. 104, 18526-18530. https://doi.org/10.1073/pnas.0706441104
  85. Blatch, G. L., and Lassle, M. (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21, 932-939. https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N
  86. Cribbs, J. T., and Strack, S. (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 39-44.
  87. Karbowski, M., Neutzner, A., and Youle, R. J. (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178, 71-84. https://doi.org/10.1083/jcb.200611064
  88. Harder, Z., Zunino, R., and McBride, H. (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340-345.
  89. Wasiak, S., Zunino, R., and McBride, H. M. (2007) Bax/ Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439-450. https://doi.org/10.1083/jcb.200610042
  90. Suzuki, M., Jeong, S. Y., Karbowski, M., Youle, R. J., and Tjandra, N. (2003) The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334, 445-458. https://doi.org/10.1016/j.jmb.2003.09.064
  91. Parone, P. A., and Martinou, J. C. (2006) Mitochondrial fission and apoptosis: an ongoing trial. Biochim. Biophys. Acta. 1763, 522-530. https://doi.org/10.1016/j.bbamcr.2006.04.005
  92. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell. 1, 515-525. https://doi.org/10.1016/S1534-5807(01)00055-7
  93. Yu, T., Robotham, J. L., and Yoon, Y. (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 103, 2653-2658. https://doi.org/10.1073/pnas.0511154103
  94. Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C. L., and Youle, R. J. (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931-938. https://doi.org/10.1083/jcb.200209124
  95. Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S. A., Mannella, C. A., and Korsmeyer, S. J. (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55-67. https://doi.org/10.1016/S1534-5807(01)00116-2
  96. Arnoult, D. (2006) Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 17, 6-12. https://doi.org/10.1016/j.tcb.2006.11.001
  97. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L., and Youle, R. J. (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001-5011. https://doi.org/10.1091/mbc.E04-04-0294
  98. Sugioka, R., Shimizu, S., and Y. (2004) Tsujimoto, Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279, 52726-52734. https://doi.org/10.1074/jbc.M408910200
  99. Chen, H., Chomyn, A., and Chan, D. C. (2005) Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction. J. Biol. Chem. 280, 26185-26192. https://doi.org/10.1074/jbc.M503062200
  100. Parone, P. A., James, D. I., Da Cruz, S., Mattenberger, Y., Donze, O., Barja, F., and Martinou, J. C. (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell Biol. 26, 7397-7408. https://doi.org/10.1128/MCB.02282-05
  101. Alirol, E., James, D., Huber, D., Marchetto, A., Vergani, L., Martinou, J. C., and Scorrano, L. (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol. Biol. Cell 17, 4593-4605. https://doi.org/10.1091/mbc.E06-05-0377
  102. Yethon, J. A., Epand, R. F., Leber, B., Epand, R. M., and Andrews, D. W. (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J. Biol. Chem. 278, 48935-48941. https://doi.org/10.1074/jbc.M306289200
  103. Yuan, H., Gerencser, A. A., Liot, G., Lipton, S. A., Ellisman, M., Perkins, G. A., and Bossy-Wetzel, E. (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death. Differ. 14, 462-471. https://doi.org/10.1038/sj.cdd.4402046
  104. Arnoult, D., Grodet, A., Lee, Y. J., Estaquier, J., and Blackstone, C. (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742-35750. https://doi.org/10.1074/jbc.M505970200
  105. Arnoult, D., Rismanchi, N., Grodet, A., Roberts, R. G., Seeburg, D. P., Estaquier, J., Sheng, M., and Blackstone, C. (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr. Biol. 15, 2112-2118. https://doi.org/10.1016/j.cub.2005.10.041
  106. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y., and Youle, R. J. (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. https://doi.org/10.1038/nature05111
  107. Delivani, P., Adrain, C., Taylor, R. C., Duriez, P. J., and Martin, S. J. (2006) Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol. Cell 21, 761-773. https://doi.org/10.1016/j.molcel.2006.01.034
  108. Nakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019-1022. https://doi.org/10.1038/sj.embor.7400790
  109. Eura, Y., Ishihara, N., Oka, T., and Mihara, K. (2006) Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J. Cell Sci. 119, 4913-4925. https://doi.org/10.1242/jcs.03253
  110. Hajek, P., Chomyn, A., and Attardi, G. (2007) Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J. Biol. Chem. 282, 5670-5681. https://doi.org/10.1074/jbc.M608168200
  111. Ishihara, N., Fujita, Y., Oka, T., and Mihara, K. (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966-2977. https://doi.org/10.1038/sj.emboj.7601184
  112. Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D. C. (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749-755. https://doi.org/10.1083/jcb.200704110
  113. Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007) Mitotic phosphorylation of dynamin- related GTPase Drp1participates in mitochondrial fission. J. Biol. Chem. 282, 11521-11529. https://doi.org/10.1074/jbc.M607279200
  114. Chang, C. R., and Blackstone, C. (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology, J. Biol. Chem. 282, 21583-21587. https://doi.org/10.1074/jbc.C700083200
  115. Zunino, R., Schauss, A., Rippstein, P., l Andrade-Navarro, M., and McBride, H. M. (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 1178-1188. https://doi.org/10.1242/jcs.03418
  116. Fukuda, T., Goto, E., Matsuki, Y., Ohmura-Hoshino, M., Sada, K., Hotta, H., Yamamura, H., Inatome, R., and Yanagi S. (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25, 3618-3626. https://doi.org/10.1038/sj.emboj.7601249

Cited by

  1. AGEs Induce Cell Death via Oxidative and Endoplasmic Reticulum Stresses in Both Human SH-SY5Y Neuroblastoma Cells and Rat Cortical Neurons vol.32, pp.8, 2012, https://doi.org/10.1007/s10571-012-9856-9
  2. The relationship between mitochondrial fusion/fission and apoptosis in the process of adipose-derived stromal cells differentiation into astrocytes vol.575, 2014, https://doi.org/10.1016/j.neulet.2014.05.025
  3. Indole phytoalexin derivatives induce mitochondrial-mediated apoptosis in human colorectal carcinoma cells vol.23, pp.24, 2017, https://doi.org/10.3748/wjg.v23.i24.4341
  4. J7, a methyl jasmonate derivative, enhances TRAIL-mediated apoptosis through up-regulation of reactive oxygen species generation in human hepatoma HepG2 cells vol.26, pp.1, 2012, https://doi.org/10.1016/j.tiv.2011.10.016
  5. Norcantharidin Induced DU145 Cell Apoptosis through ROS-Mediated Mitochondrial Dysfunction and Energy Depletion vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0084610
  6. Skeletal Muscle Mitochondria and Aging: A Review vol.2012, 2012, https://doi.org/10.1155/2012/194821
  7. Cytotoxicity and apoptosis induction in human breast adenocarcinoma MCF-7 cells by (+)-cyanidan-3-ol vol.65, pp.7-8, 2013, https://doi.org/10.1016/j.etp.2013.04.005
  8. Study of the mechanism underlying the inhibitory effects of transglutaminase Ⅱ on apoptosis in the osteosarcoma MG-63 cell line under hypoxic conditions 2015, https://doi.org/10.3892/ol.2015.3778
  9. Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+-mediated mitochondrial pathway vol.14, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5784
  10. Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging vol.12, pp.4, 2013, https://doi.org/10.1016/j.arr.2013.09.001
  11. Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice vol.35, pp.6, 2013, https://doi.org/10.1007/s11357-012-9492-9
  12. Assuming the role of mitochondria in mycobacterial infection vol.5, pp.4, 2016, https://doi.org/10.1016/j.ijmyco.2016.06.001
  13. Synthesis and cytotoxicity evaluation of regioisomeric substituted N-phenyl-3′-(chrom-4-one-3-yl)-isoxazolidines: induction of apoptosis through a mitochondrial-dependent pathway vol.4, pp.6, 2013, https://doi.org/10.1039/c3md00055a
  14. Picosecond pulsed electric fields induce apoptosis in a cervical cancer xenograft vol.11, pp.3, 2015, https://doi.org/10.3892/mmr.2014.2953
  15. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes vol.6, pp.1, 2016, https://doi.org/10.1038/srep21924
  16. Mitochondrial remodeling: Rearranging, recycling, and reprogramming vol.60, pp.2, 2016, https://doi.org/10.1016/j.ceca.2016.04.006
  17. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway vol.9, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2138
  18. Ca2+-stores in sperm: their identities and functions vol.138, pp.3, 2009, https://doi.org/10.1530/REP-09-0134
  19. Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.840
  20. Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death vol.44, pp.8, 2011, https://doi.org/10.5483/BMBRep.2011.44.8.517
  21. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca2+ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells vol.91, 2016, https://doi.org/10.1016/j.fct.2016.03.015
  22. Schizandra chinensisextracts induce apoptosis in human gastric cancer cells via JNK/p38 MAPK activation and the ROS-mediated/mitochondria-dependent pathway vol.53, pp.2, 2015, https://doi.org/10.3109/13880209.2014.913297
  23. Dihydroartemisinin prevents liver fibrosis in bile duct ligated rats by inducing hepatic stellate cell apoptosis through modulating the PI3K/Akt pathway vol.68, pp.3, 2016, https://doi.org/10.1002/iub.1478
  24. 9-cis retinoic acid induces retinoid X receptor localized to the mitochondria for mediation of mitochondrial transcription vol.377, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2008.09.122
  25. Sodium nitroprusside (SNP) sensitizes human gastric cancer cells to TRAIL-induced apoptosis vol.17, pp.2, 2013, https://doi.org/10.1016/j.intimp.2013.06.021
  26. A spectral graph theoretic approach to quantification and calibration of collective morphological differences in cell images vol.26, pp.12, 2010, https://doi.org/10.1093/bioinformatics/btq194
  27. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions vol.107, 2014, https://doi.org/10.1016/j.carbpol.2014.02.039
  28. Sirtuins and the Metabolic Hurdles in Cancer vol.25, pp.13, 2015, https://doi.org/10.1016/j.cub.2015.05.012
  29. Persistent correction of hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice by a non-conventional radical scavenger vol.382, pp.2, 2010, https://doi.org/10.1007/s00210-010-0524-7
  30. Apoptosis and Bcl-2 Protein Expression in Human Placenta over the Course of Normal Pregnancy 2010, https://doi.org/10.1111/j.1439-0264.2010.01012.x
  31. Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.663
  32. A Precise Temporal Dissection of Monosodium Glutamate-Induced Apoptotic Events in Newborn Rat Retina In Vivo vol.36, pp.8, 2011, https://doi.org/10.1007/s11064-011-0472-8
  33. Recombinant adeno-associated virus-mediated human kallikrein gene therapy protects against hypertensive target organ injuries through inhibiting cell apoptosis vol.30, pp.9, 2009, https://doi.org/10.1038/aps.2009.114
  34. In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis vol.39, pp.9, 2010, https://doi.org/10.1111/j.1600-0714.2010.00918.x
  35. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells vol.29, pp.1, 2012, https://doi.org/10.1007/s12032-010-9779-6
  36. Deficiency in Repair of the Mitochondrial Genome Sensitizes Proliferating Myoblasts to Oxidative Damage vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0075201
  37. Naringenin-induced apoptosis is attenuated by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human leukemia U937 cells vol.23, pp.2, 2009, https://doi.org/10.1016/j.tiv.2008.12.005
  38. Inhibition of skin squamous cell carcinoma proliferation and promote apoptosis by dual silencing of NET-1 and survivin vol.34, pp.2, 2015, https://doi.org/10.3892/or.2015.4062
  39. Apoptosis Induction of Human Lung Carcinoma Cells by Chan Su (Venenum Bufonis) Through Activation of Caspases vol.2, pp.3, 2009, https://doi.org/10.1016/S2005-2901(09)60057-1
  40. YGS40, an active fraction of Yi-Gan San, reduces hydrogen peroxide-induced apoptosis in PC12 cells vol.13, pp.6, 2015, https://doi.org/10.1016/S1875-5364(15)30037-6
  41. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris vol.47, pp.7, 2009, https://doi.org/10.1016/j.fct.2009.04.014
  42. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats vol.18, pp.3, 2014, https://doi.org/10.5717/jenb.2014.18.3.301
  43. Mitochondrial dysfunction in nonalcoholic steatohepatitis vol.5, pp.2, 2011, https://doi.org/10.1586/egh.11.11
  44. Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates vol.70, pp.6, 2013, https://doi.org/10.1007/s00018-012-1066-6
  45. Induction of Apoptosis by Ethanol Extracts of Ganoderma lucidum in Human Gastric Carcinoma Cells vol.3, pp.1, 2010, https://doi.org/10.1016/S2005-2901(10)60004-0
  46. Glucocorticoids and their receptors: Insights into specific roles in mitochondria vol.112, pp.1-2, 2013, https://doi.org/10.1016/j.pbiomolbio.2013.04.001
  47. Efeito de anti-inflamatórios não esteroidais na apoptose de células epidermais lamelares de equinos com laminite vol.65, pp.5, 2013, https://doi.org/10.1590/S0102-09352013000500020
  48. The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder vol.12, pp.7, 2012, https://doi.org/10.1586/ern.12.64
  49. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways vol.36, pp.10, 2013, https://doi.org/10.1007/s12272-013-0217-0
  50. Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling vol.24, pp.2, 2010, https://doi.org/10.1016/j.tiv.2009.09.017
  51. A novel mutation in PYCR1 causes an autosomal recessive cutis laxa with premature aging features in a family vol.155, pp.6, 2011, https://doi.org/10.1002/ajmg.a.33963
  52. Induction of apoptosis by streptochlorin isolated from Streptomyces sp. in human leukemic U937 cells vol.22, pp.6, 2008, https://doi.org/10.1016/j.tiv.2008.06.010
  53. The natural secolignan peperomin E induces apoptosis of human gastric carcinoma cells via the mitochondrial and PI3K/Akt signaling pathways in vitro and in vivo vol.23, pp.8, 2016, https://doi.org/10.1016/j.phymed.2016.04.001
  54. 3α,23-Isopropylidenedioxyolean-12-en-27-oic Acid, a Triterpene Isolated from Aceriphyllum rossii, Induces Apoptosis in Human Cervical Cancer HeLa Cells through Mitochondrial Dysfunction and Endoplasmic Reticulum Stress vol.33, pp.9, 2010, https://doi.org/10.1248/bpb.33.1620
  55. Catechol cytotoxicity in vitro: Induction of glioblastoma cell death by apoptosis vol.29, pp.3, 2010, https://doi.org/10.1177/0960327109360364
  56. Tumor necrosis factor-alpha participates in apoptosis in the limbic system after myocardial infarction vol.14, pp.11, 2009, https://doi.org/10.1007/s10495-009-0395-x
  57. Antiproliferative Effects of Celecoxib in Hep-2 Cells through Telomerase Inhibition and Induction of Apoptosis vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4919
  58. Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise vol.45, pp.2, 2010, https://doi.org/10.1016/j.exger.2009.11.002
  59. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5115
  60. Synthesis of 1,3-thiazine-2,4-diones with potential anticancer activity vol.70, 2013, https://doi.org/10.1016/j.ejmech.2013.10.017
  61. Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells vol.22, pp.6, 2012, https://doi.org/10.5352/JLS.2012.22.6.815
  62. Fucoxanthin Activates Apoptosis via Inhibition of PI3K/Akt/mTOR Pathway and Suppresses Invasion and Migration by Restriction of p38-MMP-2/9 Pathway in Human Glioblastoma Cells vol.41, pp.10, 2016, https://doi.org/10.1007/s11064-016-1989-7
  63. Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism vol.19, pp.5, 2014, https://doi.org/10.1007/s12192-013-0490-3
  64. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer vol.68, pp.4, 2016, https://doi.org/10.1007/s10616-015-9897-2
  65. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation vol.15, pp.1, 2014, https://doi.org/10.1186/1471-2202-15-9
  66. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient vol.7, 2016, https://doi.org/10.3389/fphar.2016.00247
  67. Peroxisome Proliferator–Activated Receptor α Protects Capillary Pericytes in the Retina vol.184, pp.10, 2014, https://doi.org/10.1016/j.ajpath.2014.06.021
  68. Deep sequencing reveals the mitochondrial DNA variation landscapes of breast-to-brain metastasis blood samples 2017, https://doi.org/10.1080/24701394.2017.1350950
  69. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins vol.36, pp.5, 2015, https://doi.org/10.3892/ijmm.2015.2358
  70. Sanguinarine Increases Sensitivity of Human Gastric Adenocarcinoma Cells to TRAIL-mediated Apoptosis by Inducing DR5 Expression and ROS Generation vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.927
  71. Ficus umbellata Vahl. (Moraceae) Stem Bark Extracts Exert Antitumor Activities In Vitro and In Vivo vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061073
  72. Evidence for an ATP-sensitive K+ channel in mitoplasts isolated from Trypanosoma cruzi and Crithidia fasciculata vol.39, pp.9, 2009, https://doi.org/10.1016/j.ijpara.2009.01.002
  73. Protection from antimycin A-induced mitochondrial dysfunction by Nelumbo nucifera seed extracts vol.36, pp.1, 2013, https://doi.org/10.1016/j.etap.2013.02.015
  74. The Ca2+-calmodulin-Ca2+/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes vol.88, pp.9, 2014, https://doi.org/10.1007/s00204-014-1219-5
  75. Molecular and immune response characterizations of a novel AIF and cytochrome c in Litopenaeus vannamei defending against WSSV infection vol.56, 2016, https://doi.org/10.1016/j.fsi.2016.06.050
  76. Confocal Raman spectroscopy to monitor intracellular penetration of TiO2nanoparticles vol.45, pp.9, 2014, https://doi.org/10.1002/jrs.4561
  77. Towards the virtual screening of BIK inhibitors with the homology-modeled protein structure vol.22, pp.3, 2013, https://doi.org/10.1007/s00044-012-0105-z
  78. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers vol.12, pp.9, 2014, https://doi.org/10.3390/md12094898
  79. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A vol.95, pp.10, 2013, https://doi.org/10.1016/j.biochi.2013.06.006
  80. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0127898
  81. Downregulation of the Expression of Mitochondrial Electron Transport Complex Genes in Autism Brains vol.23, pp.3, 2013, https://doi.org/10.1111/bpa.12002
  82. Effects of Platycodon grandiflorum on the Induction of Autophagy and Apoptosis in HCT-116 Human Colon Cancer Cells vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1244
  83. Recent advances into the understanding of mitochondrial fission vol.1833, pp.1, 2013, https://doi.org/10.1016/j.bbamcr.2012.05.002
  84. Cisplatin binds to human copper chaperone Cox17: the mechanistic implication of drug delivery to mitochondria vol.50, pp.20, 2014, https://doi.org/10.1039/C3CC48847K
  85. Hepatoprotective Mongolian prescription II enhances the antitumor effects of chemotherapeutics in hepatocellular carcinoma xenografts vol.213, pp.5, 2017, https://doi.org/10.1016/j.prp.2017.01.006
  86. Antitumoral Activity of a Trichloromethyl Pyrimidine Analogue: Molecular Cross-Talk between Intrinsic and Extrinsic Apoptosis vol.27, pp.6, 2014, https://doi.org/10.1021/tx500094x
  87. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells vol.55, pp.2, 2011, https://doi.org/10.1002/mnfr.201000024
  88. Melatonin-induced autophagy is associated with degradation of MyoD protein in C2C12 myoblast cells vol.53, pp.3, 2012, https://doi.org/10.1111/j.1600-079X.2012.00998.x
  89. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs vol.61, pp.2, 2015, https://doi.org/10.1262/jrd.2014-070
  90. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases vol.8, pp.2, 2015, https://doi.org/10.3390/ph8020151
  91. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases vol.3, 2016, https://doi.org/10.3389/fmolb.2016.00043
  92. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway vol.44, pp.7, 2011, https://doi.org/10.1590/S0100-879X2011007500078
  93. Antiproliferative Activity of Fucoidan Was Associated with the Induction of Apoptosis and Autophagy in AGS Human Gastric Cancer Cells vol.76, pp.3, 2011, https://doi.org/10.1111/j.1750-3841.2011.02099.x
  94. Cytotoxicity and mitochondrial damage caused by silica nanoparticles vol.25, pp.8, 2011, https://doi.org/10.1016/j.tiv.2011.06.012
  95. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro vol.24, pp.7, 2010, https://doi.org/10.1016/j.tiv.2010.08.001
  96. Glutathione-mediated effects of lithium in decreasing protein oxidation induced by mitochondrial complex I dysfunction vol.122, pp.6, 2015, https://doi.org/10.1007/s00702-014-1318-8
  97. Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage vol.20, pp.8, 2009, https://doi.org/10.1097/CAD.0b013e32832e8998
  98. Mitochondrial dynamics altered by oxidative stress in cancer vol.50, pp.10, 2016, https://doi.org/10.1080/10715762.2016.1210141
  99. Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress vol.43, pp.1, 2010, https://doi.org/10.5483/BMBRep.2010.43.1.057
  100. Flavonoid C-glucosides Derived from Flax Straw Extracts Reduce Human Breast Cancer Cell Growth In vitro and Induce Apoptosis vol.7, 2016, https://doi.org/10.3389/fphar.2016.00282
  101. 6,7-Seco-ent-Kauranoids Derived from Oridonin as Potential Anticancer Agents vol.80, pp.9, 2017, https://doi.org/10.1021/acs.jnatprod.7b00057
  102. Induction of apoptosis by laminarin, regulating the insulin-like growth factor-IR signaling pathways in HT-29 human colon cells vol.30, pp.4, 2012, https://doi.org/10.3892/ijmm.2012.1084
  103. Control of late apoptotic events by the p38 stress kinase inl-glutamine-deprived mouse hybridoma cells vol.31, pp.5, 2013, https://doi.org/10.1002/cbf.2916
  104. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases vol.87, pp.1, 2009, https://doi.org/10.1016/j.pneurobio.2008.09.017
  105. Mitochondrial death effectors: Relevance to sarcopenia and disuse muscle atrophy vol.1800, pp.3, 2010, https://doi.org/10.1016/j.bbagen.2009.05.007
  106. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein vol.8, 2017, https://doi.org/10.3389/fphys.2017.00128
  107. Redox Control of the Survival of Healthy and Diseased Cells vol.15, pp.11, 2011, https://doi.org/10.1089/ars.2010.3685
  108. Placental oxidative stress, selenium and preeclampsia vol.1, pp.1, 2011, https://doi.org/10.1016/j.preghy.2010.10.008
  109. Persistent ER Stress Induces the Spliced Leader RNA Silencing Pathway (SLS), Leading to Programmed Cell Death in Trypanosoma brucei vol.6, pp.1, 2010, https://doi.org/10.1371/journal.ppat.1000731
  110. Cyclometalated Iridium(III)-Polyamine Complexes with Intense and Long-Lived Multicolor Phosphorescence: Synthesis, Crystal Structure, Photophysical Behavior, Cellular Uptake, and Transfection Properties vol.18, pp.42, 2012, https://doi.org/10.1002/chem.201200979
  111. Acitretin affects bioenergetics of liver mitochondria and promotes mitochondrial permeability transition: Potential mechanisms of hepatotoxicity vol.306, 2013, https://doi.org/10.1016/j.tox.2013.01.020
  112. Chemopreventive activity of Azadirachta indica on two-stage skin carcinogenesis in murine model 2011, https://doi.org/10.1002/ptr.3280
  113. Histone deacetylase inhibitors induce mitochondrial elongation vol.227, pp.7, 2012, https://doi.org/10.1002/jcp.23027
  114. Apoptosis induction of human leukemia U937 cells by gomisin N, a dibenzocyclooctadiene lignan, isolated from Schizandra chinensis Baill vol.48, pp.3, 2010, https://doi.org/10.1016/j.fct.2009.12.012
  115. Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects vol.76, pp.11, 2008, https://doi.org/10.1016/j.bcp.2008.07.013
  116. Nimbolide a limonoid from Azadirachta indica inhibits proliferation and induces apoptosis of human choriocarcinoma (BeWo) cells vol.27, pp.3, 2009, https://doi.org/10.1007/s10637-008-9170-z
  117. Tounongsan (透脓散) extract induces apoptosis in cultured Raji cells vol.18, pp.7, 2012, https://doi.org/10.1007/s11655-012-1145-4
  118. Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells vol.180, pp.2, 2009, https://doi.org/10.1016/j.cbi.2009.03.020
  119. PEDF and PEDF-derived peptide 44mer protect cardiomyocytes against hypoxia-induced apoptosis and necroptosis via anti-oxidative effect vol.4, pp.1, 2015, https://doi.org/10.1038/srep05637
  120. Mechanism of Inhibition of HepG2 Cell Proliferation by a Glycoprotein from Hizikia fusiformis vol.45, pp.6, 2012, https://doi.org/10.5657/KFAS.2012.0553
  121. 6-O-Angeloylenolin induced cell-cycle arrest and apoptosis in human nasopharyngeal cancer cells vol.189, pp.3, 2011, https://doi.org/10.1016/j.cbi.2010.12.022
  122. Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis vol.21, pp.4, 2013, https://doi.org/10.4062/biomolther.2013.030
  123. Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 × Brown Norway rats vol.33, pp.2, 2011, https://doi.org/10.1007/s11357-010-9196-y
  124. Calcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis vol.58, pp.3, 2011, https://doi.org/10.1016/j.neuint.2010.11.021
  125. Mitochondrial quality control pathways as determinants of metabolic health vol.37, pp.8, 2015, https://doi.org/10.1002/bies.201500013
  126. Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival vol.46, pp.1, 2014, https://doi.org/10.1007/s10863-013-9527-7
  127. Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics vol.7, pp.10, 2011, https://doi.org/10.1371/journal.pcbi.1002212
  128. Cytoprotective effects of 6′-O-galloylpaeoniflorin against ultraviolet B radiation-induced cell damage in human keratinocytes vol.50, pp.7, 2014, https://doi.org/10.1007/s11626-014-9747-0
  129. Isoalantolactone inhibits constitutive NF-κB activation and induces reactive oxygen species-mediated apoptosis in osteosarcoma U2OS cells through mitochondrial dysfunction vol.32, pp.4, 2014, https://doi.org/10.3892/or.2014.3368
  130. MitoKATP activity in healthy and ischemic hearts vol.41, pp.2, 2009, https://doi.org/10.1007/s10863-009-9213-y
  131. High Glucose Disrupts Mitochondrial Morphology in Retinal Endothelial Cells vol.177, pp.1, 2010, https://doi.org/10.2353/ajpath.2010.091029
  132. Prostaglandin A2 activates intrinsic apoptotic pathway by direct interaction with mitochondria in HL-60 cells vol.91, pp.1-2, 2010, https://doi.org/10.1016/j.prostaglandins.2009.12.003
  133. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study vol.394, pp.2, 2009, https://doi.org/10.1016/j.ab.2009.07.026
  134. Cocoa and Chocolate in Human Health and Disease vol.15, pp.10, 2011, https://doi.org/10.1089/ars.2010.3697
  135. Ameliorating ER-stress attenuates Aeromonas hydrophila-induced mitochondrial dysfunctioning and caspase mediated HKM apoptosis in Clarias batrachus vol.4, pp.1, 2015, https://doi.org/10.1038/srep05820
  136. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expressions and nuclear entry of NF-κB in HL-60 cells vol.34, pp.3, 2011, https://doi.org/10.1007/s12272-011-0316-8
  137. Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? vol.20, pp.4, 2009, https://doi.org/10.1016/j.tem.2009.01.004
  138. Spliced leader RNA silencing (SLS) - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress vol.5, pp.1, 2012, https://doi.org/10.1186/1756-3305-5-107
  139. Design, synthesis and biological evaluation of novel nitric oxide-donating protoberberine derivatives as antitumor agents vol.132, 2017, https://doi.org/10.1016/j.ejmech.2017.03.027
  140. Apoptosis: why and how does it occur in biology? vol.29, pp.6, 2011, https://doi.org/10.1002/cbf.1774
  141. Sensitize AGS Human Gastric Adenocarcinoma Cells to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Mediated Apoptosis vol.12, pp.4, 2009, https://doi.org/10.1089/jmf.2008.1114
  142. Laminarin-induced apoptosis in human colon cancer LoVo cells vol.7, pp.5, 2014, https://doi.org/10.3892/ol.2014.1952
  143. Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo vol.8, pp.6, 2014, https://doi.org/10.3892/ol.2014.2597
  144. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. vol.311, pp.3, 2016, https://doi.org/10.1152/ajpheart.00264.2016
  145. Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells vol.16, pp.2, 2017, https://doi.org/10.3892/mmr.2017.6798
  146. Mitochondrial fission and mitophagy depend on cofilin-mediated actin depolymerization activity at the mitochondrial fission site vol.37, pp.11, 2018, https://doi.org/10.1038/s41388-017-0064-4
  147. Design, synthesis and biological evaluation of novel nitric oxide-donating podophyllotoxin derivatives as potential antiproliferative agents against multi-drug resistant leukemia cells vol.8, pp.60, 2018, https://doi.org/10.1039/C8RA06360E
  148. Cytotoxicity, antiprotozoal, and anti-inflammatory activities of eight curry powders and comparison of their UPLC-ESI-QTOF-MS chemical profiles pp.00225142, 2019, https://doi.org/10.1002/jsfa.9512
  149. Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-36475-0
  150. Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39546-y