DOI QR코드

DOI QR Code

In Vitro Activity of Methyl Gallate Isolated from Galla Rhois Alone and in Combination with Ciprofloxacin Against Clinical Isolates of Salmonella

  • Choi, Jang-Gi (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Kang, Ok-Hwa (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Lee, Young-Seob (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Oh, You-Chang (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Chae, Hee-Sung (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Jang, Hye-Jin (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Kim, Jong-Hak (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University) ;
  • Sohn, Dong-Hwan (Department of Pharmacy, College of Pharmacy, Wonkwang University) ;
  • Shin, Dong-Won (Department of Oriental Medicine Resources, Sunchon National University) ;
  • Park, Hyun (Department of Parasitology, College of Medicine, Wonkwang University) ;
  • Kwon, Dong-Yeul (College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University)
  • Published : 2008.11.30

Abstract

Salmonella remains a primary cause of food poisoning worldwide, and massive outbreaks have been witnessed in recent years. Therefore, this study investigated the antimicrobial activity of methyl gallate (MG), which exhibited good antibacterial activity ($MIC=3.9-125{\mu}g/ml$) against all the bacterial strains tested. In a checkerboard dilution test, MG markedly lowered the MICs of ciprofloxacin (CPFX) against Salmonella. The combined activity of CPFX and MG against Salmonella resulted in fractional inhibitory concentrations (FICs) ranging from 0.0037 to 0.015 and from 0.24 to $7.8{\mu}g/ml$, respectively. Meanwhile, the FIC index ranged from 0.31-0.37, indicating a marked synergistic relationship between CPFX and MG against Salmonella. Time-kill assays also showed a decrease in the CFU/ml between the combination and the more active compound. Therefore, this study demonstrated that MG and CPFX can act synergistically in inhibiting Salmonella in vitro.

Keywords

References

  1. Adhikari, M. R. P. and S. Baliga. 2002. Ciprofloxacin resistant typhoid with incomplete response to cefotaxime. J. Assoc. Physicians India 50: 428-429
  2. Ahn, Y. J., C. O. Lee, J. H. Kweon, J. W. Ahn, and J. H. Park. 1998. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J. Appl. Microbiol. 84: 439-443 https://doi.org/10.1046/j.1365-2672.1998.00363.x
  3. Ahn, Y. J., H. S. Lee, H. S. Oh, H. T. Kim, and Y. H. Lee. 2005. Antifungal activity and mode of action of Galla Rhois-derived phenolics against phytopathogenic fungi. Pest. Biochemi. Physiol. 81: 105-112 https://doi.org/10.1016/j.pestbp.2004.10.003
  4. Ali, N. A., W. D. Julich, C. Kusnick, and U. Lindequist. 2001. Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities. J. Ethnopharmacol. 74: 173-179 https://doi.org/10.1016/S0378-8741(00)00364-0
  5. Chang, S. C., Y. C. Chen, K. T. Luh, and W. C. Hsieh. 1995. In vitro activities of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood. Diagn. Microbiol. Infect. Dis. 23: 105-110 https://doi.org/10.1016/0732-8893(95)00170-0
  6. Chen, A. and L. Zhang. 2003. The antioxidant (-)-epigallocatechin- 3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factor-$\alpha$ receptor. J. Biol. Chem. 278: 23381-23389 https://doi.org/10.1074/jbc.M212042200
  7. Chen, J. C., T. Y. Ho, Y. S. Chang, S. L. Wu, and C. Y. Hsiang. 2006. Anti-diarrheal effect of Galla Chinensis on the Escherichia coli heat-labile enterotoxin and gangloside interaction. J. Ethnopharmacol. 103: 385-391 https://doi.org/10.1016/j.jep.2005.08.036
  8. Chung, K. T., Z. Lu, and M. W. Chou. 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36: 1053-1060 https://doi.org/10.1016/S0278-6915(98)00086-6
  9. Cleaveland, S., M. K. Laurenson, and L. H. Taylor. 2001. Diseases of humans and their domestic mammals: Pathogen chaacteristics, host range and the risk of emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356: 991-999 https://doi.org/10.1098/rstb.2001.0889
  10. Clinical and Laboratory Standards Institute. 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standards. CLSI document M7-A5. Wayne, PA
  11. Clinical and Laboratory Standards Institute. 2001. Performance standards for antimicrobial disk susceptibility tests. Approved standards. CLSI document M2-A7. Wayne, PA
  12. Darwish, R. M., T. Aburjai, S. Al-Khalil, and A. Mahafzah. 2002. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus. J. Ethnopharmacol. 79: 359-364 https://doi.org/10.1016/S0378-8741(01)00411-1
  13. Gaind, R., B. Paglietti, M. Murgia, R. Dawar, S. Uzzau, P. Cappuccinelli, M. Deb, P. Aggarwal, and S. Rubino. 2006. Molecular characterization of ciprofloxacin-resistant Salmonella enteriea serovar Typhi and Paratyphi A causing enteric fever in India. J. Antimicrob. Chemother. 58: 1139-1144 https://doi.org/10.1093/jac/dkl391
  14. Herikstad, H., Y. Motarjemi, and R. V. Tauxe. 2002. Salmonella surveillance: A global survey of public health serotyping. Epidemiol. Infect. 129: 1-8
  15. Kubo, I., K. Fujita, and K. Nihei. 2002. Anti-Salmonella activity of alkyl gallates. J. Agric. Food Chem. 50: 6692-6696 https://doi.org/10.1021/jf020467o
  16. Mazumdar, K., N. K. Dutta, K. A. Kumar, and S. G. Dastidar. 2005. In vitro and in vivo synergism between tetracycline and the cardiovascular agent oxyfedrine HCl against common bacterial strains. Biol. Pharm. Bull. 28: 713-717 https://doi.org/10.1248/bpb.28.713
  17. Mehta, G., V. S. Randhawa, and N. P. Mohapatra. 2001. Intermediate susceptibility to Ciprofloxacin in salmonella typhi Strains in India. Eur. J. Clin. Microbiol. Infect. Dis. 20: 760-761
  18. Nascimento, G. G. F., J. Locatelli, P. C. Freitas, and G. L. Silva. 2000. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistance bacteria. Braz. J. Microbiol. 31: 247-256
  19. Shahverdi, A. R., A . Fakhimi, G. Zarrini, G. Dehghan, and M. Iranshahi. 2007. Galbanic acid from Ferula szowitsiana enhanced the antibacterial activity of penicillin G and cephalexin against Staphylococcus aureus. Biol. Pharm. Bull. 30: 1805-1807 https://doi.org/10.1248/bpb.30.1805
  20. Shim, Y. J., H. K. Doo, S. Y. Ahn, Y. S. Kim, J. K. Seong, I. S. Park, and B. H. Min. 2003. Inhibitory effect of aqueous extract from the gall of Rhus Chinensis on alpha-glucosidase activity and postprandial blood glucose. J. Ethnopharmacol. 85: 283-287 https://doi.org/10.1016/S0378-8741(02)00370-7
  21. Timurkaynak, F., F. Can, O. K. Azap, M. Demirbilek, H. Arslan, and S. O. Karaman. 2006. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and a cinetobacter baumannii isolated from intensive care units. Int. J. Antimicrob Agents. 27: 224-228 https://doi.org/10.1016/j.ijantimicag.2005.10.012
  22. Yam, T. S., J. M. T. Hamilton-Mueller, and S. Shah. 1998. The effect of a component of tea Camellia sinensis on methicillin resistance, PBP2' synthesis, and b-lactamase production in Staphylococcus aureus. J. Antimicrob. Chemother. 42: 211-216 https://doi.org/10.1093/jac/42.2.211

Cited by

  1. Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria vol.14, pp.5, 2008, https://doi.org/10.3390/molecules14051773
  2. Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus vol.48, pp.11, 2010, https://doi.org/10.3109/13880201003770150
  3. Inhibitory Effects of Chinese Medicinal Herbs on Plant-Pathogenic Bacteria and Identification of the Active Components from Gallnuts of Chinese Sumac vol.96, pp.8, 2012, https://doi.org/10.1094/pdis-08-11-0673-re
  4. 완대탕(完帶湯)의 Gardnerella vaginalis에 대한 시험관내 항균력 및 Clindamycin과 병용효과 vol.25, pp.1, 2008, https://doi.org/10.15204/jkobgy.2012.25.1.034
  5. Effect of Gallotannins Derived from Sedum takesimense on Tomato Bacterial Wilt vol.97, pp.12, 2013, https://doi.org/10.1094/pdis-04-13-0350-re
  6. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana vol.115, pp.6, 2008, https://doi.org/10.1111/jam.12328
  7. Synergistic Effect and Antiquorum Sensing Activity of Nymphaea tetragona (Water Lily) Extract vol.2014, pp.None, 2008, https://doi.org/10.1155/2014/562173
  8. Methyl Gallate from Galla rhois Successfully Controls Clinical Isolates of Salmonella Infection in Both In Vitro and In Vivo Systems vol.9, pp.7, 2008, https://doi.org/10.1371/journal.pone.0102697
  9. 메티실린-내성 포도상구균에 대하여 Brazilein 혼합에 따른 항생제 Hygromycin-b의 상승효과 vol.22, pp.6, 2008, https://doi.org/10.7783/kjmcs.2014.22.6.504
  10. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells vol.2, pp.None, 2008, https://doi.org/10.1016/j.toxrep.2015.03.001
  11. Deodorizing function and antibacterial activity of fabrics dyed with gallnut (Galla Chinensis) extract vol.85, pp.10, 2015, https://doi.org/10.1177/0040517514559580
  12. Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus vol.8, pp.7, 2008, https://doi.org/10.1016/j.apjtm.2015.06.010
  13. Hepatotoxicity and nephrotoxicity of gallotannin-enriched extract isolated from Galla Rhois in ICR mice vol.31, pp.3, 2008, https://doi.org/10.5625/lar.2015.31.3.101
  14. Protective Effect of Gallotannin-Enriched Extract Isolated from Galla Rhois against CCl 4 -Induced Hepatotoxicity in ICR Mice vol.8, pp.3, 2008, https://doi.org/10.3390/nu8030107
  15. Identification and partial purification of antibacterial compounds againstStreptococcus mutansfromGalla Rhois vol.40, pp.1, 2008, https://doi.org/10.11149/jkaoh.2016.40.1.3
  16. Insoluble-Bound Phenolics in Food vol.21, pp.9, 2008, https://doi.org/10.3390/molecules21091216
  17. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango) vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/6949835
  18. Hepatoprotective Effect of Gallotannin-enriched Extract Isolated from Gall on Hydrogen Peroxide-induced Cytotoxicity in HepG2 Cells vol.13, pp.50, 2008, https://doi.org/10.4103/pm.pm_424_15
  19. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca 2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss vol.18, pp.3, 2008, https://doi.org/10.3390/ijms18030581
  20. Phenolic Composition, Anti‐Inflammatory, Antioxidant, and Antimicrobial Activities of Alchemilla mollis (Buser) Rothm. vol.14, pp.9, 2008, https://doi.org/10.1002/cbdv.201700150
  21. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061573
  22. Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats vol.15, pp.6, 2008, https://doi.org/10.1371/journal.pone.0234211
  23. Metabolism of Gallic Acid and Its Distributions in Tea ( Camellia sinensis ) Plants at the Tissue and Subcellular Levels vol.21, pp.16, 2020, https://doi.org/10.3390/ijms21165684
  24. Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity vol.9, pp.8, 2020, https://doi.org/10.3390/antiox9080696