Comparison of Estimated Daily Dietary Intake of Dioxins in Coastal, Rural, and Urban District

어촌, 농촌, 도시 지역별 주민의 식품을 통한 다이옥신의 섭취량 추정

  • Park, Jung-Duck (Dept. of Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Huang, Ming-Ai (Dept. of Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Im, Ruth (Dept. of Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Choi, Byung-Sun (Dept. of Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Yang, Jae-Ho (Dept. of Pharmacology, School of Medicine, Catholic University of Daegu) ;
  • Bae, Yun-Jung (Dept. of Food & Nutrition, Sookmyung Women's University) ;
  • Jun, Ye-Sook (Dept. of Human Nutrition & Food Science, Chungwoon University) ;
  • Choi, Mi-Kyeong (Dept. of Human Nutrition & Food Science, Chungwoon University)
  • 박정덕 (중앙대학교 의과대학 예방의학교실) ;
  • 황명애 (중앙대학교 의과대학 예방의학교실) ;
  • 임룻 (중앙대학교 의과대학 예방의학교실) ;
  • 최병선 (중앙대학교 의과대학 예방의학교실) ;
  • 양재호 (대구가톨릭대학교 의과대학 약리학교실) ;
  • 배윤정 (숙명여자대학교 식품영양학과) ;
  • 전예숙 (청운대학교 식품영양학과) ;
  • 최미경 (청운대학교 식품영양학과)
  • Published : 2008.03.31


The human population is mainly exposed to dioxins through the diet. The purpose of this study was to estimate the daily dietary intake of PCDDs and PCDFs in Korean adults residing in different regions. Subjects were recruited and divided into three groups according to the districts where they lived: rural (n=213), coastal (n=193), and urban district (n=187). Subjects were interviewed using a general questionnaire and 24-hour recall for dietary intake. The daily intake of dioxins was estimated through the use of the database of dioxins contents in 35 Korean foods. The average age of the subjects were 61.5 years for coastal district, 57.6 years for rural district, and 49.4 years for urban district. Daily energy intake was 1707.7 kcal for rural district, 1596.5 kcal for urban district, and 1493.8 kcal for coastal district. There was no significant difference in total food intake by regions. The intakes from fishes of coastal district, those from cereals, vegetables, meats, and seasonings of rural district, and those from sugars, pulses, eggs, seaweeds, milks, oils of urban area were higher than those of the other two districts. The daily dioxins intake of coastal district (0.70 pgTEQ/kg/day) was significantly higher than those of rural district (0.32 pgTEQ/kg/day) and urban district (0.46 pgTEQ/kg/day). The dioxins intake from cereals, pulses, vegetables, fishes of coastal district and those from eggs and milks of urban area were the highest among the districts. The daily dioxins intake was positively correlated with the intakes of meats, eggs, fishes, oils, and seasonings. Therefore, it could be concluded that the daily dioxins intake of coastal district is higher than that in other districts and the fish is one of the main sources in dioxin intakes. However, daily dioxins intakes of the three regions were below the level of tolerable daily intake (TDI).


  1. International Agency for Research on Center. 1997. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 69. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. IARC, Lyon
  2. Startin TR, Rose M, Wright C, Parker I, Gilbert J. 1990. Surveillance of British food for PCDDs and PCDFs. Chemosphere 20: 793-798
  3. Czuczwa JM, Hites RA. 1986. Airborne dioxins and dibenzofurans: sources and fate. Environ Sci Technol 20: 195-220
  4. Rappe C. 1993. Sources of exposure. Environmental concentration and exposure assessment of PCDDs and PCDFs. Chemosphere 27: 211-225
  5. Shara MA, Stohs SJ. 1987. Biochemical and toxicological effects of 2,3,7,8-TCDD congeners in female rats. Arch Environ Contam Toxicol 16: 599-605
  6. Scheter A. 1994. Dioxin and Health. Plenum Press, New York
  7. WHO-ECEH, IPCS. 1998. Assessment of the health risk of dioxins; re-evaluation of the tolerable daily intake (Executive Summary). Stockholm
  8. Roeder RA, Garber MJ, Schelling GT. 1998. Assessment of dioxins in foods from animal origins. J Anim Sci 76: 142-151
  9. van den Berg M, Peterson RE, Schrenk D. 2000. Human risk assessment and TEFs. Food Addit Contam 17: 347-332
  10. Kitamura K, Yoshikawa K, Iwama M, Nagao M. 2001. Justification of measurement of eight congener levels instead of twenty congeners of dioxins for mass screening of human exposure. J Toxicol Sci 26: 163-168
  11. Wittsiepe J, Furst P, Wilhelm M. 2007. The 2005 World Health Organization re-evaluation of TEFs for dioxins and dioxin-like compounds-what are the consequences for German human background levels? Int J Hyg Environ Health 210: 335-339
  12. 이효민. 2007. 식품 중 다이옥신의 위해성 평가 및 최근 관리 동향. 한국환경독성학회 심포지움 및 학술발표회. p 19-48
  13. Kim KS, Kim JC, Kim MY. 2000. Estimation of dietary daily intkae of PCDDs/PCDFs from Korean retail food. J KSEE 22: 1345-1355
  14. Kim Y, Lee SY, Lee H, Yoon E, Yang KH, Kim EK, Kim M. 2002. The levels of PCDFs and PCDDs in the four kinds of fish in Korea. Anal Sci & Technol 15: 142-148
  15. Im SH, Strause KD, Giesy JP, Chang YS, Matsuda M, Wakimoto T. 2004. Concentrations and accumulation profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans in aquatic tissues, and ambient air from South Korea. Chemosphere 55: 1293-1302
  16. Kim Y, Yang SH, Lee SY, Kim M. 2001. Levels of PCDDs and PCDFs in two kinds of fast foods in Korea. Chemosphere 43: 851-855
  17. Ministry of Health & Welfare. 2006. Report on 2005 national health and nutrition examination survey- Nutrition survey. Ministry of Health & Welfare, Seoul
  18. Moon HB, Ok G. 2006. Dietary intake of PCDDs, PCDFs and dioxin-like PCBs, due to the consumption of various marine organisms from Korea. Chemosphere 62: 1142- 1152

Cited by

  1. Estimation of Amount and Frequency of Consumption of 50 Domestic Livestock and Processed Livestock Products vol.45, pp.8, 2016,
  2. Development of the automated cleanup system for the analysis of PCDDs, PCDFs and DL-PCBs vol.88, pp.11, 2012,