DOI QR코드

DOI QR Code

Design of an Endoscopic Microscope Objective Lens Composed of Flexible Fiber Bundle and Gradient-index with a High Resolution and a Minimally-Invasive Outer Diameter

광섬유 다발과 Gradient-index Lens가 결합된 고 분해능 및 최소침습 직경의 공초점 내시 현미경 대물렌즈의 설계

  • Jang, Sun-Young (Department of Applied Optics and Electromagnetics, College of Natural Science, Hannam University) ;
  • Rim, Cheon-Seog (Department of Applied Optics and Electromagnetics, College of Natural Science, Hannam University)
  • 장선영 (한남대학교 광.전자물리학과) ;
  • 임천석 (한남대학교 광.전자물리학과)
  • Published : 2008.04.30

Abstract

We present a new design for an endoscope objective lens composed of a lexible fiber bundle with 30,000 core, and a gradient-index (GRIN) objective lens with an optical adaptor. The characteristic of this objective lens is to be minimally-invasive to be able to insert easily in the internal organs of live animals. The GRIN lens has a small diameter and a very simple construction, which is selected with the diameter of 1.0 mm and numerical aperture of 0.5 to achieve a minimally-invasive outer diameter and a high resolution. The resultant designed lens shows the performance as follows; a lateral resolution of 1.63 um and diameters of 100% encircled energy of $0.3\;{\mu}m$ and $0.83\;{\mu}m$ for the on-axis and the off-axis image point, respectively. Also, we can present a cheap solution with a lateral resolution of 1.74 um and diameters of 100% encircled energy of $1.10\;{\mu}m$ and $2.84\;{\mu}m$ for the on-axis and the off-axis image point, respectively.

공초점 내시 현미경의 경우 살아있는(in vivo) 동물체들의 뇌 속에서의 암세포나 특정 세포를 분석할 수 있으며, 비 침습적으로 얻을 수 있는 기술과 동시에 실시간으로 암을 검출할 수 있는 장점이 있다. 공초점 내시 현미경의 경우 최소 직경과 고 분해능을 요하게 된다. 본 논문은 최소 직경을 가지는 GRIN 렌즈와 유동적으로 움직일 수 있는 광섬유 다발을 연결시킴으로써 보다 측정에 용이하도록 하였다. 직경이 1 mm이고 수치구경이 0.5이며 pitch가 0.25인 GRIN렌즈를 사용하였으며, 광섬유 다발은 30,000개의 코어로 구성된 유동적인 광섬유 다발을 사용하였다. 본 논문은 GRIN 렌즈에 의해서 발생되었던 구면수차는 광학보상자를 이용하여 보정하였다. 그 결과 설계되어진 공초점 내시 현미경 대물렌즈의 경우 종 분해능은 $1.63\;{\mu}m$이고 축상물점과 비축물점에서의 에너지 분포가 100%일 때 각각의 spot size는 축상물점에서 $0.3\;{\mu}m$ 비축물점에서 $0.83\;{\mu}m$의 결과를 얻었으며 보다 값싸고 제작에 용이한 양산 비구면 렌즈로 대체 구현된 결과에서는 종 분해능이 $1.74\;{\mu}m$이고, 축상 물점에 대한 spot size는 $1.1\;{\mu}m$이고 비축물점에서는 spot size가 $2.94\;{\mu}m$로 설계되었다.

Keywords

References

  1. 김홍중, 김현석, "공초점레이저 주사현미경의 원리와 생물학적 응용", Oral Biology Research, vol. 24(I), pp. 151-153, 2000
  2. 배한성, 김종배, 권남익, "광섬유를 이용한 공초점 내시현미경", Optical Society of Korea Annual Meeting, pp. 244-245, 2005
  3. 김명국, "공초점레이저 주사 현미경", 치과임상, 192: 18-21, 1997
  4. B. A. Flusberg, J. C. Lung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett., 30, pp. 2272-2274, 2005 https://doi.org/10.1364/OL.30.002272
  5. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope," Appl. Opt., 41, pp. 4603-4610, 2002 https://doi.org/10.1364/AO.41.004603
  6. Cheon-Seog Rim, Design of an Endoscope Objective Lens with a High Numerical Aperture and a Minimally -Invasive Outer Diameter, Journal of the Korean Physical Society, vol. 51, no. 1, July 2007 https://doi.org/10.3938/jkps.51.52
  7. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain imaging using oneand two- photon fluorescence microendoscopy," Journal of Neurophysiology 92, pp. 3121-3133, 2004 https://doi.org/10.1152/jn.00234.2004
  8. Werner Goberl, Jason N. D Kerr, Axel Nimmerjabhn, and Fritjof Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient index lens objective," OSA. vol. 29, no. 21, Nomember 1, 2004
  9. Chen Liang and Michael R. Descour, "Fiber confocal reflectance microscope (FCRM) for in-vivo imaging," Opical Society of America, vol. 9, no. 13, p. 824, December 2001
  10. Hyun-Joon Shin, Mark C. Pierce, Daesung Lee, Hyejun Ra, Olav Solgaard, and Rebecca Richards-Kortum, "Fiberoptic confocal microscope using a MEMS scanner and miniature objective lens," OPTICS EXPRESS, vol. 15, no. 15, 23 July 2007
  11. J. Knittel, L. Schnieder, G. Buess, Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Optics Communications, vol. 188, no. 5, pp. 267-273, 15 February 2001 https://doi.org/10.1016/S0030-4018(00)01164-0
  12. I. Veilleux, D. Cote, and C. P. Lin, "In vivo Multimodality Video Rate Laser Scanning Confocal Microscope," Optical Society of America, 2005
  13. 임천석, '기하광학', 테그미디어, pp. 249-254, pp. 70-71, 2003
  14. W. J. Smith, "Modern Optical Engineering," 3rd ed, McGraw-Hill, New York, 2000
  15. W. J. Tomlinson, Aberration of grin-rod lenses in multimode optical fiber devices. -Applied optics v. 19 no. 7, pp. 1117-1126, 1980 https://doi.org/10.1364/AO.19.001117
  16. K. B. Paxton and W. Streifer, "Aberration and Design of Graded- index (GRIN) rods used as image relays", Applied optics, vol. 10, no. 9, pp. 2090-2096, 1971 https://doi.org/10.1364/AO.10.002090
  17. Xiaohong Sun, Hui Ma, Hai Ming, Zhiqiang Zheng, Jiwen Yang, and Jianping Xie, "The measurement of refractive index profile and aberration of radial radient index lens by using imaging method," Optics & Laser Technology, Volume 36, Issue 2, pp. 163-166, March 2004 https://doi.org/10.1016/j.optlastec.2003.07.003
  18. GRINTECH, Inc., Frankfurt, Germany, http://www.grintech.de
  19. Sumitomo Electric Industries. Ltd, http://www.sei.co.jp
  20. U. S. Patten: 5,881,195, "Image guide comprising plurality of gradient-index optical fibers," Janes K. Waller. Mar; 9, 1999
  21. Thorlbas, Inc., Newton, N. J., http://www.thorlabs.com

Cited by

  1. Design of an Endoscopic Microscope Objective Composed of GRIN(Gradient-Index) Lens with Scanning Devices vol.20, pp.6, 2009, https://doi.org/10.3807/KJOP.2009.20.6.311