DOI QR코드

DOI QR Code

Relationship Between Annealing Temperature and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates

p-Si 기판에 성장한 BaTiO3 박막의 어닐링온도와 구조적 특성과의 관계

  • Min, Ki-Deuk (Nuclear Materials Research Center, Korea Atomin Energy Research Institute) ;
  • Kim, Dong-Jin (Department of Materials Engineering, Hanbat National University) ;
  • Lee, Jong-Won (Department of Materials Engineering, Hanbat National University) ;
  • Park, In-Yong (Department of Materials Engineering, Hanbat National University) ;
  • Kim, Kyu-Jin (HumanElecs (Co. Ltd.))
  • 민기득 (한국원자력연구원 원자력재료연구부) ;
  • 김동진 (한밭대학교 신소재공학부) ;
  • 이종원 (한밭대학교 신소재공학부) ;
  • 박인용 (한밭대학교 신소재공학부) ;
  • 김규진 (휴먼일렉스(주))
  • Published : 2008.04.30

Abstract

In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of a post-annealing process on the structural characteristics of the $BaTiO_3$ thin films were investigated. For the crystallization of the grown thin films, post-annealing was carried out in air at an annealing temperature that varied from $500-1000^{\circ}C$. XRD results showed that the highest crystal quality was obtained from the samples annealed at $600-700^{\circ}C$. From the SEM analysis, no crystal grains were observed after annealing at temperatures ranging from 500 to $600^{\circ}C$; and 80 nm grains were obtained at $700^{\circ}C$. The surface roughness of the $BaTiO_3$ thin films from AFM measurements and the crystal quality from Raman analysis also showed that the optimum annealing temperature was $700^{\circ}C$. XPS results demonstrated that the binding energy of each element of the thin-film-type $BaTiO_3$ in this study shifted with the annealing temperature. Additionally, a Ti-rich phenomenon was observed for samples annealed at $1000^{\circ}C$. Depth-profiling analysis through a GDS (glow discharge spectrometer) showed that a stoichiometric composition could be obtained when the annealing temperature was in the range of 500 to $700^{\circ}C$. All of the results obtained in this study clearly demonstrate that an annealing temperature of $700^{\circ}C$ results in optimal structural properties of $BaTiO_3$ thin films in terms of their crystal quality, surface roughness, and composition.

Keywords

References

  1. M. Shimizu, M. Fujimoto and E. Tanikawa, Mater. Res. Soc. Symp. Proc., 310, 255 (1993)
  2. J. K. G. Panitz, C. C. Hu, Ferroelectrics, 47, 161 (1980)
  3. D. J. McClure, J. R. Crowe, J. Vac. Sci. Technol., 16, 311 (1979) https://doi.org/10.1116/1.569934
  4. E. K. Evangelou, N. Konofaos, X. Alsanoglou, S. Kennon and C. B. Thomas, Mater. Sci. Semi. Pro., 4, 305 (2001) https://doi.org/10.1016/S1369-8001(00)00109-8
  5. Seif A. Nasser, Appl. Sur. Sci., 157, 14 (2000) https://doi.org/10.1016/S0169-4332(99)00495-X
  6. N. Y. Lee, T. Sekine, Y. Ito and K. Vchino, Jpn. J. Appl. Phys., 33, 1484 (1994) https://doi.org/10.1143/JJAP.33.1484
  7. L. Preda, L. Courselle, B. Despax and J. Bandet, Adelina Ianculescu, Thin Solid Films., 389, 43 (2001) https://doi.org/10.1016/S0040-6090(01)00885-9
  8. Q. X. Jia, J. L. Smith, Philosophical Magazine B, 77, 163 (1998) https://doi.org/10.1080/13642819808206390
  9. H. B. Kim, S. H. Lee, J. M. Kim, I. C. Park and S. M. Lee, J. Ind. Sci. Chongju Univ., 16, 103 (1998)
  10. T. Yoshimura, N. Fujimura, T. Ito, J. Cry. Growth, 174, 790 (1997) https://doi.org/10.1016/S0022-0248(97)00061-4
  11. J. M. Ahn, D. K. Choi and Y. H. Kim, J. Kor. Cer. Soc., 31, 886 (1994)
  12. P. Pertosa, Phys. Rev. B, 17, 2011 (1978) https://doi.org/10.1103/PhysRevB.17.2011
  13. M.Cernea, I. Matei, C. Logofatu, J. Meter. Sci., 36, 5027 (2001) https://doi.org/10.1023/A:1011858319581
  14. E. K. Evangelou, N. Konofauos, Philosophical Magazine B, 80, 395 (2000) https://doi.org/10.1080/13642810008208599
  15. E. K. Evangelou, N. Konofauos, M. R. Craven, W. M. Cranton, C. B. Thomas, Appl. Sur. Sci., 166, 504 (2000) https://doi.org/10.1016/S0169-4332(00)00483-9
  16. J. Gottmann, B. Vosseler and E. W. Kreutz, Appl. Sur. Sci., 197-198, 831 (2002) https://doi.org/10.1016/S0169-4332(02)00457-9
  17. Y. Watanabe, Y. Matsumoto, H. Kunitomo, M. Tanamura and E. Nishimoto, Jpn. J. Appl. Phys., 9B, 5182 (1994) https://doi.org/10.1143/JJAP.33.5182
  18. J. Wang, T. Zhang and J. Xiang, B. Zhang, Mater. Chem. Phy., 108(2), 445 (2008) https://doi.org/10.1016/j.matchemphys.2007.10.023
  19. B. Wang, L. D. Zhang, L. Zhang, Y. Yan and S. L. Zhang, Thin Solid Films, 354, 262 (1999) https://doi.org/10.1016/S0040-6090(99)00432-0
  20. M. R. Craven, W. M. Cranton, S. Toal and H. S. Reehal, Semi. Sci. Techol., 13, 404 (1998) https://doi.org/10.1088/0268-1242/13/4/009
  21. Handbook of X-ray Photoelectron Spectroscopy, J. F. Moulder, Eden Prairie, Physical Electronics, Inc (1995)
  22. K. Okazaki, Ceramic Engineering for Dielectrics, Gakken-Sha Publishing Co., Tokyo, (1983)
  23. T. Nomura, T. Yamaguchi, Ceram. Bull., 59[4], 453(1980)
  24. A. Lotnyk, A. Graff, S. Senz, N. D. Zakharov, D. Hesse, Sol. Sta. Sci., 1 (2007)