Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system

고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리

  • Kim, Jung-Kon (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Jung, Hyo-Ki (Department of Bio Materials Engineering, Chosun University) ;
  • Son, Joo-Young (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Kim, Si-Wouk (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University)
  • 김중곤 (조선대학교 환경공학부, BK21 바이오수소생산 핵심 사업팀) ;
  • 정효기 (조선대학교 생물신소재학과) ;
  • 손주영 (조선대학교 환경공학부, BK21 바이오수소생산 핵심 사업팀) ;
  • 김시욱 (조선대학교 환경공학부, BK21 바이오수소생산 핵심 사업팀)
  • Published : 2008.02.29

Abstract

Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

음식물쓰레기를 처리하기 위한 3단계 메탄발효시스템으로부터 유출되는 음식물 발효 폐액은 고농도 유기성 폐수이다. 유기성 폐수는 고도처리 시스템에 의해 방류기준에 적합하게 처리되어져야만 한다. 본 연구에서는 유기성 폐수를 처리하기 위해 고효율 $UV/TiO_{2}$ 광촉매 산화공정의 최적 운전 조건을 조사하였다. 첫 번째 공정에서 폐수에 응집제인 $FeCl_{3}$를 전처리 하였으며, 응집을 위한 최적 pH와 응집제의 농도는 각각 pH 4와 2000 mg/L이었다. 이 공정을 통하여 최대 52.6%의 COD가 제거되었다. 두 번째는 $UV/TiO_{2}$ 광촉매 산화공정으로, 최적 운전 조건은 중심파장이 254 nm, 폐수 온도 및 pH가 각각 $40^{\circ}C$와 pH 8, 반응기 주입 공기량이 40 L/min인 것으로 조사되었다. 응집제를 이용한 전처리 공정과 광촉매 산화공정을 병합하여 최적조건에서 폐수를 처리할 경우 T-N과 COD의 제거율은 각각 69.7%와 70.9% 이었다.

Keywords

References

  1. Choi, D. W., W. G. Lee, S. J. Lim, B. J. Kim, H. N. Chang, S. T. Chang (2003), Simulation on. long-term operation of an anaerobic bioreactor for Korean food wastes. Biotechnol. Bioprocess Eng. 8, 23-31 https://doi.org/10.1007/BF02932894
  2. Gallen , C., A. Henning, J. Winter (2003), Scale-up of anaerobic digestion of the biowaste fraction from domestic wastes. Water Res. 37, 1433-1441 https://doi.org/10.1016/S0043-1354(02)00537-7
  3. Nakamura, Y., G. Mtui (2003), Anaerobic fermentation of woody biomass treated by various methods. Biotechnol. Bioprocess Eng. 8, 179-182 https://doi.org/10.1007/BF02935893
  4. Neves, L. , R. Ribeiro, R. Oliveira, M. M. Alves (2006) , Enhancement of methane production from barley waste. Biomass Bioenerg. 30, 599-601 https://doi.org/10.1016/j.biombioe.2005.12.003
  5. Tada, C., S. Saw ayama (2004 ), Phot oenhancement of bioga s production from thermophilic anaerobic digestion. J. Biosci. Bioeng. 98, 387-390 https://doi.org/10.1016/S1389-1723(04)00301-9
  6. Kositzi, M., I. Poulios, S. Malato, J. Caceres, A. Campos (2004), Solar photocatalytic treatment of synthetic municipal wastewater. Water Res. 38, 1147-1154 https://doi.org/10.1016/j.watres.2003.11.024
  7. Arana, J., J. A. Herrer a Meli an , J. M. Dona Rodriguez, O. Gonzalez Diaz, A. Viera, J. Perez Pena, P. M. Marrero Sosa, V. Espino Jimenez (2002), $TiO_2$-photocatalysis as a tertiary treatment of naturally treated wastewater. Catal. Today 76, 279-289 https://doi.org/10.1016/S0920-5861(02)00226-2
  8. Blanco, J., S. Malato, P. Fernandez, A. Vidal , A. Morales, P. Trincado, J. C. Oliveira, C. Minero, M. Musci, C. Casalle, M. brunotte, S. Tratzky, N, Dischinger, K. H. Funken, C. Sattler, M. Vincent, M. Collares-Pereira, J. F. Mendes, C. M. Rangel (1999), Compound parabolic concentration technology development to commercial solar detoxification applications. Sol. Energy 67, 317-330 https://doi.org/10.1016/S0038-092X(00)00078-5
  9. Malato, S., J. Blanco, A. Vidal, C. Richter (2002), Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catal. B: Environ. 37, 1-15 https://doi.org/10.1016/S0926-3373(01)00315-0
  10. Gernjak, W., M. I. Maldonado, S. Malato, J. Caceres, T. Krutzler, A. Glaser, R. Bauer (2004), Pilot-plant treatment of olive mill wastewater (OMW) by solar $TiO_2$ photocataly si s and solar photo-Fenton. Sol. Energy 77, 567-572 https://doi.org/10.1016/j.solener.2004.03.030
  11. Alfano, O ., D. Bahnemann, A. Cassano, R. Dillen , R. Goslich (2000), Photocatalysis in water environments using artificial and solar light. Catal. Today 58(2-3), 199-230 https://doi.org/10.1016/S0920-5861(00)00252-2
  12. Chang, C. N., Y. S. Ma, G. C. Fang, A. C. Chao, M. C. Tsai, H-F. Sung (2004), Decolorizing of lignin wastewater using the photochemical UV/$TiO_2$ process. Chemosphere 56, 1011-1017 https://doi.org/10.1016/j.chemosphere.2004.04.021
  13. Serpone, N., A. V. Emeline (2002), Suggested terms and definitions in photocatalysis and radiolysis. Int. J. Photoenergy 4, 91-131 https://doi.org/10.1155/S1110662X02000144
  14. Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53(1), 69-96
  15. Fujishima, A., T. Rao, D, Tryk (2000) , Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1(1), 1-21 https://doi.org/10.1016/S1389-5567(00)00002-2
  16. Hoffman, M. S. Martin , W. Choi , D. Bahnemann (1995), Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69-96 https://doi.org/10.1021/cr00033a004
  17. APHA (1995), Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington DC
  18. Chun , H. D. (1994), Advanced oxidation process with $TiO_2$. photocatalyst. J. of KSEE 16, 809-818
  19. Lee, D. K. (2003), Removal of aqueous ammonia to molecular nitrogen by catalytic wet oxidation. J. of KSEE 25, 889-897
  20. Andreozzi, R., V. Caprio, A. Insola, R. Marotta (1999), Advanced oxidation processes (AOP) for water purificaiton and recovery. Catal. Today, 53, 51-59 https://doi.org/10.1016/S0920-5861(99)00102-9
  21. Staehelin, J., J. Hoigne (1985), Decomposition of ozone in the presence of organic solutes action as promotors and inhibitors of radical chain reactions. Envir. Sci. Technol. 19, 1206 https://doi.org/10.1021/es00142a012
  22. Park, S. W., J. B. Kim (2003), Photocatalytic oxidation reaction in removal of $NH_4$-N by using $TiO_2$. J. of the Environmental Sciences 12, 1071-1077 https://doi.org/10.5322/JES.2003.12.10.1071