DOI QR코드

DOI QR Code

Corrosion Behavior of Anode Current Collectors in Molten Carbonate Fuel Cells

용융탄산염 연료전지 Anode부 집전판의 부식특성

  • Han, Won-Kyu (Division of Materials Science and Engineering, Hanyang University) ;
  • Ju, Jeong-Woon (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Jung-Cheol (Research Institute of Steel Processing & Application, Hanyang University) ;
  • Kang, Sung-Goon (Division of Materials Science and Engineering, Hanyang University) ;
  • Jun, Joong-Hwan (Research Institute of Science & Technology) ;
  • Lim, Hee-Chun (Korea Electric Power Research Institute)
  • 한원규 (한양대학교 신소재공학부) ;
  • 주정운 (한양대학교 신소재공학부) ;
  • 신정철 (한양대학교 철강공정 및 응용연구소) ;
  • 강성군 (한양대학교 신소재공학부) ;
  • 전중환 (포항산업과학연구원) ;
  • 임희천 (한전 전력연구원)
  • Published : 2008.05.27

Abstract

The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.

Keywords

References

  1. J. P. P. Huijsmans, G. J. Kraaij, R. C. Makkus, G. Rietveld, E. F. Sitters, H.Th.J. Reijers, J. Power Sources, 86, 117 (2000) https://doi.org/10.1016/S0378-7753(99)00448-6
  2. B. Bergman, C. Lagergren, G. Lindbergh, S. Schwartz, B. Zhu, J. Electrochem. Soc., 148 (1), A38 (2001) https://doi.org/10.1149/1.1339027
  3. P. Biedenkopf, M. Spiegel, H. J. Grabke Electrochimica Acta, 44, 683 (1998) https://doi.org/10.1016/S0013-4686(97)10191-8
  4. P. Capobianco, P. Guarnone, M. Leonini, A. Torazza, High temperature corrosion in molten carbonate fuel cells for power generation, in Proceedings of the International AIM/NACE Conference, (Venice, May 18.19, 2000) p.189
  5. S. Randstr'om, C. Lagergren, P. Capobianco, J.Power Sources, 160, 782 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.069
  6. J.P.T. Vossen, L.Plomp, J.H.W, de Wit, J.Electrochem. Soc., 141, 3040 (1994) https://doi.org/10.1149/1.2059276
  7. J. P. T. Vossen, R. C. Makkus, J. H. W. de Wit, J. Electrochem. Soc., 143, 66 (1996) https://doi.org/10.1149/1.1836388
  8. G. Durante, S. Vegni, P. Capobianco, F. Golgovici, J. Power Sources, 152, 204 (2005) https://doi.org/10.1016/j.jpowsour.2005.01.031
  9. I. Parezanoviæ, E. Strauch, M. Spiegel J. Power Sources, 135, 52 (2004) https://doi.org/10.1016/j.jpowsour.2004.04.007