DOI QR코드

DOI QR Code

Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation

[ 0.1\;μm ] SOI-MOSFET의 적정 채널도핑농도에 관한 시뮬레이션 연구

  • Choe, Kwang-Su (Dept. of Electronic Materials Engineering, College of Engineering University of Suwon)
  • 최광수 (수원대학교 공과대학 전자재료공학과)
  • Published : 2008.05.27

Abstract

In submicron MOSFET devices, maintaining the ratio between the channel length (L) and the channel depth (D) at 3 : 1 or larger is known to be critical in preventing deleterious short-channel effects. In this study, n-type SOI-MOSFETs with a channel length of $0.1\;{\mu}m$ and a Si film thickness (channel depth) of $0.033\;{\mu}m$ (L : D = 3 : 1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioning transistors on the very thin Si film, a protective layer of $0.08\;{\mu}m$-thick surface oxide was deposited prior to the source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron doping concentration of the Si film, in which the device channel is formed, was used as the key variable in the process simulation. The finished devices were electrically tested with a Medici device simulator. The result showed that, for a given channel doping concentration of $1.9{\sim}2.5\;{\times}\;10^{18}\;cm^{-3}$, the threshold voltage was $0.5{\sim}0.7\;V$, and the subthreshold swing was $70{\sim}80\;mV/dec$. These value ranges are all fairly reasonable and should form a 'magic region' in which SOI-MOSFETs run optimally.

Keywords

References

  1. J. -L. Pelloie, Microelectronic Engineering, 39, 155 (1997) https://doi.org/10.1016/S0167-9317(97)00173-1
  2. R. -H. Yan, A. Ouzmard and K. F. Lee, IEEE Trans. Electron Devices, 39, 1704 (1992) https://doi.org/10.1109/16.141237
  3. S. -H. Oh, D. Monroe and J. M. Hergenrother, IEEE Electron Device Lett., 21, 445 (2000) https://doi.org/10.1109/55.863106
  4. K. Oshima, S. Cristoloveanu, B. Guillaumot, G. Le Carval, S. Deleonibus, H. Iwai, C. Mazure and K. H. Park, Proceedings of the 2002 IEEE International SOI Conference, p. 95 (2002)
  5. K. Oshima, S. Cristoloveanu, B. Guillaumot, G. Le Carval, H. Iwai, C. Mazure, M. S. Kang, Y. H. Bae, J. W. Kwon, S. Deleonibus and J. H. Lee, Silicon-on-Insulator Technology and Devices XI, ed. S. Cristoloveanu, G. K. Celler, J. G. Fossum, F. Gamiz, K. Izumi and Y. -W. Kim, PV 2003- 05, p. 45, The Electrochemical Society Proceedings Series, Pennington, NJ (2003)
  6. K. Oshima, S. Cristoloveanu, B. Guillaumot, S. Deleonibus and H. Iwai, J. Electrochem. Soc., 151, G257 (2004) https://doi.org/10.1149/1.1652055
  7. K. S. Choe, Kor. J. Mater. Res., 15, 613 (2005) https://doi.org/10.3740/MRSK.2005.15.9.613
  8. M. T. Bohr, and Y. A. El-Mansy, IEEE Trans. Electron Devices, 45, 620 (1998) https://doi.org/10.1109/16.661223
  9. J. -P. Colinge, IEEE Electron Device Lett., 7, 244 (1986) https://doi.org/10.1109/EDL.1986.26359
  10. A. E. Schmitz and J. Y. Chen, IEEE Trans. Electron Devices, 33, 148 (1986) https://doi.org/10.1109/T-ED.1986.22452
  11. C. Fiegna, H. Iwai, T. Wada, M. Saito, E. Sangiorgi, and B. Ricco, IEEE Trans. Electron Devices, 41, 941 (1994) https://doi.org/10.1109/16.293306
  12. H. Iwai, IEEE J. Solid-State Circuits, 34, 357 (1999) https://doi.org/10.1109/4.748187
  13. M. S. Pavanello, J. A. Martino, V. Dessard, and D. Flandre, Electrochem. and Solid-State Lett., 3, 50 (2000) https://doi.org/10.1149/1.1390955
  14. A. Chaudhry and M. J. Kumar, IEEE Trans. Electron Devices, 4, 99 (2006)
  15. TSUPREM-4, Two-Dimensional Process Simulation Program, Version 6.5, Technology Modeling Associates, Inc., Sunnyvale, California (1997)
  16. Medici, Two-Dimensional Device Simulation Program, Version 2.2, Technology Modeling Associates, Inc., Sunnyvale, California (1996)