DOI QR코드

DOI QR Code

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool (Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Kwang-Youll (Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Sang-Hyun (Department of Forest Environment, Korea Forest Research Institute) ;
  • Jung, Soon-Je (Department of Molecular Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Seon-Woo (Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University) ;
  • Moon, Byung-Ju (Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University)
  • Published : 2008.03.31

Abstract

Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Keywords

References

  1. Adam, G. C. 1988. Thanatephorus cucumeris (Rhizoctonia solani) a species of wide host range. In: Advances in Plant Pathology (Vol. 6). Genetics of Plant Pathogenic Fungi. ed. by G. S. Sidhu, pp. P535-552. Academic Press, New York, USA.
  2. Bae, Y-S., Park, K., Lee, Y-G. and Choi, O-K. 2007. A simple and rapid method for functional analysis of plant growth promoting rhizobacteria using the development of cucumber adventitious root system. Plant Pathol. J. 23:223-225. https://doi.org/10.5423/PPJ.2007.23.3.223
  3. Cheetham, P. S. J. Blunt, K. W. and Bucke, C. 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol. Bioeng. 21:2155-2168. https://doi.org/10.1002/bit.260211202
  4. Coley-Smith, J. R., Ridout, C. J., Mitchell, C. M. and Lynch, J. M. 1991. Control of bottom rot disease of lettuce (Rhizoctonia solani) using preparations of Trichoderma viride, T. hazianum or toclofos-methyl. Pl. Pathol. 40:359-366. https://doi.org/10.1111/j.1365-3059.1991.tb02391.x
  5. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
  6. Davidson, F. and Reuszer, H. W. 1978. Persistence of Rhizobium japonicum on the soybean seed coat under controlled temperature and humidity. Appl. Environ. Microbiol. 35:94-96.
  7. DeLucca II, A. J., Connick Jr., W. J., Fravel, D. R., Lewis, J. A. and Bland, J. M. 1990. The use of bacterial alginates to prepare biocontrol formulations. J. Ind. Microbiol. 6:129-134. https://doi.org/10.1007/BF01576432
  8. Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C. and Lemanceau, P. 1998. Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol. 104:903- 910. https://doi.org/10.1023/A:1008626212305
  9. Edwards, U., Rogall, T., Blocker, H., Emde, M. and Bottger, E. C. 1989. Isolation and direct complete determination of entire genes. Nucleic Acids Res. 17:7843-7853. https://doi.org/10.1093/nar/17.19.7843
  10. Elsas, J. D. van, Trevors, J. T., Jain, D. K., Wolters, A. C., Heijnen, C. E. and van Overbeek, L. S. 1992. Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil. Biol. Fertil. Soils 14:14-22. https://doi.org/10.1007/BF00336297
  11. Fravel, D. R., Marois, J. J., Lumsden, R. D. and Connick Jr., W. J. 1985. Encapsulation of potential biocontrol agents in an alginate- clay matrix. Phytopathology 75:774-777. https://doi.org/10.1094/Phyto-75-774
  12. Grosch, R., Scherwinski, K., Lottmann, J. and Berg, G. 2006. Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological research. 110:1464-1474. https://doi.org/10.1016/j.mycres.2006.09.014
  13. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117- 153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
  14. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  15. Herr, L. J. 1992. Characteristics of Rhizoctonia isolates associated with bottom rot of lettuce in organic soils in Ohio. Phytopathology 82:1046-1050. https://doi.org/10.1094/Phyto-82-1046
  16. Kim, H. T., Kamakura, T. and Yamaguchi, I. 1996. Effects of pencycuron on the osmotic stability of protoplasts of Rhizoctonia solani. J. Pestic. Sci. 21:159-163. https://doi.org/10.1584/jpestics.21.159
  17. Kim, H-J., Park, J-Y., Back, J-W., Lee, J-W, Jung, S-J. and Moon, B. J. 2004. Occurrence of bottom rot of crisphead lettuce caused by Rhizoctonia solani and its pathogenicity. J. Life Sci. (In Korean) 14:689-695. https://doi.org/10.5352/JLS.2004.14.4.689
  18. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J.Clin. Med. 44:301-307.
  19. Kloepper, J. W. and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant-growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020-1024. https://doi.org/10.1094/Phyto-71-1020
  20. Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. and Schippers, B. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101:655-664. https://doi.org/10.1007/BF01874869
  21. Paul, E., Fages, J., Blanc, P., Goma, G. and Pareilleux, A. 1993. Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl. Microbiol. Biotechnol. 40:34-39.
  22. Pieterse, C. M. J., Van Pelt, J. A., Van Wees, S. C. M., Ton, J., Léon-Kloosteriziel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., Knoester, M., Van der Sluis, I., Bakker, P. A. H. M. and Van Loon, L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur. J.Plant Pathol. 107:51-61. https://doi.org/10.1023/A:1008747926678
  23. Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Van Pelt, J. A. and Van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid and pathogenesis-related gene expression. Plant Cell 8:1225-1237. https://doi.org/10.1105/tpc.8.8.1225
  24. Russo, A., Moënne-Loccoz, Y., Fedi, S., Higgins, P., Fenton, A., Dowling, D. N., O'Regan, M. and O'Gara, F. 1996. Improved delivery of biocontrol Pseudomonas and their antifungal metabolites using alginate polymers. Appl. Microbiol. Biotechnol. 44:740-745.
  25. Stone, G. E. and Smith, R. E. 1900. The rotting of greenhouse lettuce. Mass. Agric. Exp. Stn. Bull. 69.
  26. Trevors, J. T., Elsas, J. D. van, Lee, H. and Wolters A. C. 1993. Survival of alginate-encapsulated Pseudomonas fluorescens cells in soil. Appl. Microbiol. Biotechnol. 39:637-643.
  27. Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu.Rev. Phytopathol. 36:453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  28. Van Peer, R., Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734. https://doi.org/10.1094/Phyto-81-728
  29. Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van Westende, Y. A. M., Hartog, F. and Van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 6:716-724.

Cited by

  1. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions vol.147, pp.05, 2009, https://doi.org/10.1017/S0021859609008806
  2. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172