DOI QR코드

DOI QR Code

Antioxidative Activity of Extracts from Wisteria floribunda Flowers

등나무 꽃 추출물의 항산화 활성

  • Oh, Won-Gyeong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Jang, In-Cheol (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Jeon, Gyeong-Im (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Hae-Ryong (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Lee, Seung-Cheol (Dept. of Food Science and Biotechnology, Kyungnam University)
  • 오원경 (경남대학교 식품생명학과) ;
  • 장인철 (경남대학교 식품생명학과) ;
  • 전경임 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 이승철 (경남대학교 식품생명학과)
  • Published : 2008.06.30

Abstract

The antioxidant activities of Wisteria floribunda flowers (WFF) were evaluated. The samples were prepared by extracting separately two different colored flowers (purple and white) with four different solvents (methanol, ethanol, acetone, and water). The antioxidant properties were evaluated by determining total phenolic contents (TPC), radical scavenging activity (RSA), and reducing power (RP). Water extract from purple WFF and ethanol extract of white WFF showed the highest total phenol contents (491 and 787 ${\mu}M$ gallic acid equivalents), respectively. Water extracts of purple and white WFF also showed higher RSA. In the case of RP, ethanol extract of purple WFF, methanol and water extracts of white WFF showed relatively higher values. The 200 ${\mu}M$ $H_2O_2$ induced oxidative DNA damage in human leukocytes was significantly inhibited with WFF extracts excluding ethanol and acetone extracts of purple flowers. These results suggest that W. floribunda flowers have significant antioxidative activity and protective effect against oxidative DNA damage.

등나무 꽃 50 g에 1 L의 네 가지 용매(메탄올, 에탄올, 아세톤, 물)를 각각 가하여 추출한 다음, 농축하여 각각의 용매별 추출물을 얻었다. 이 용매별 추출물을 이용하여 등나무 꽃의 항산화 활성을 조사하였다. 그 결과, 총 페놀 함량에서 보라색은 물 추출물이 491 ${\mu}M$ GAE로 가장 높았고, 흰색은 에탄올 추출물이 787 mM GAE로 가장 높았다. 보라색 등나무 꽃의 DPPH 라디칼 소거능은 1,000 ${\mu}g/mL$ 농도에서 물 추출물이 58.21%로 가장 높은 값을 가지는 것으로 나타났으며, 흰색 꽃도 물 추출물에서 74.52%로 가장 높은 값을 가졌다. ABTS 라디칼 소거능의 경우에도 1,000 ${\mu}g/mL$ 농도에서 보라색 꽃과 흰 꽃의 물 추출물이 각각 64.50%와 73.07%로 가장 높은 활성을 보였다. 환원력은 보라색 꽃의 에탄올 추출물, 흰 꽃의 메탄올과 물 추출물이 비교적 높게 측정되었다. 한편, 등나무 꽃 추출물의 산화적 스트레스에 의한 DNA 손상억제효과를 평가하기 위해 1, 10, 50 ${\mu}g/mL$의 농도로 백혈구에 처리한 후 $H_2O_2$(200 ${\mu}M$)로 DNA 손상을 유도한 결과, 보라색 꽃의 에탄올 50 ${\mu}g/mL$ 처리구와 모든 농도의 아세톤 추출물 처리구를 제외하고는 $H_2O_2$ 처리양성 대조구에 비해 유의적으로 감소하였다. 흰색 꽃의 경우 모든 추출물에서 $40{\sim}80%$ 정도의 높은 저해율을 보였다. 따라서 등나무 꽃 추출물이 천연 항산화제로서의 잠재적 가능성을 가지고 있음을 알 수 있었다.

Keywords

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  2. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Ineract 160: 1-40 https://doi.org/10.1016/j.cbi.2005.12.009
  3. Branen AL. 1975. Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
  4. Larson RA. 1988. The antioxidants of higher plants. Phytochemistry 27: 969-978 https://doi.org/10.1016/0031-9422(88)80254-1
  5. Choi U, Shin DH, Chang YS, Shin JI. 1992. Screening of natural antioxidant from plant and their antioxidative effect. Korean J Food Sci Technol 24: 142-148
  6. Wang H, Cao G, Prior R. 1996. Total antioxidant capacity of fruits. J Agric Food Chem 44: 701-705 https://doi.org/10.1021/jf950579y
  7. Shin MK. 1994. The science of green tee. Korean J Dietary Culture 9: 433-445
  8. Liu CX, Xiao PG. 1992. Recent advances on ginseng research in China. J Ethnopharmacol 36: 27-38 https://doi.org/10.1016/0378-8741(92)90057-X
  9. An BJ, Lee CE, Son JH, Lee JY, Choi GH, Park TS. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. J Korean Soc Appl Biol Chem 48: 280-284
  10. Gutfinger T. 1981. Polyphenols in olive oil. J Am Oil Chem Soc 58: 966-968 https://doi.org/10.1007/BF02659771
  11. Jeong SM, Kim SY, Park HR, Lee SC. 2004. Effect of ar-infrared radiation on the activity of extracts from Citrus unshiu peels. J Korean Soc Food Sci Nutr 33: 1580-1583 https://doi.org/10.3746/jkfn.2004.33.9.1580
  12. Muller HE. 1985. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl Bakteriol Mikrobio Hyg 259: 151-158 https://doi.org/10.1016/S0176-6724(85)80045-6
  13. Oyaizu M. 1986. Studies on product of browning reaction prepared from glucose amine. Jap J Nutr 44: 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  14. SAS. 1995. SAS/STAT User's Guide. SAS Institute, NC, USA
  15. Choi HJ, Park JH, Han HS, Son JH, Son GM, Bae JH, Choi C. 2004. Effect of polyphenol compound from Korean pear on lipid metabolism. Kor J Food Sci Technol 33: 299-304 https://doi.org/10.3746/jkfn.2004.33.2.299
  16. Park CS. 2005. Component and quality characteristics of powdered green tea cultivated in Hwagae area. Kor J Food Preserv 12: 36-42
  17. Blois MS. 1958. Antioxidant determinations by the use of a stable free radicals. Nature 181: 1199-2000 https://doi.org/10.1038/1811199a0
  18. Lee SY, Hwang EJ, Kim GH, Choi YB, Lim CY, Kim SM. 2005. Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L. Korean J Medicinal Crop Sci 13: 93-100
  19. Lee BB, Chun JH, Lee SH, Park HR, Kim JM, Park E, Lee SC. 2007. Antioxidative and antigenotoxic activity of extracts from Rhododendron mucromulatum Turcz. flowers. J Korean Soc Food Sci Nutr 36: 1628-1632 https://doi.org/10.3746/jkfn.2007.36.12.1628
  20. Wang MF, Shao Y, Yi JG, Zhu NQ, Rngarajan M, Lavoie EJ, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J Agric Food Chem 46: 4869-4873 https://doi.org/10.1021/jf980614b
  21. Meir S, Kanner J, Akiri B, Philosoph-Hadas S. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43: 1813-1819 https://doi.org/10.1021/jf00055a012
  22. Shiddhuraju P, Mohan PS, Becker K. 2002. Studies on the antioxidant activity of Indian laburnum (Cassia fistula L): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79: 61-67 https://doi.org/10.1016/S0308-8146(02)00179-6
  23. Schlesier K, Harwat M, Bohm V, Bitsch R. 2002. Assess ment of antioxidant activity by using different in vitro methods. Free Radic Res 36: 177-187 https://doi.org/10.1080/10715760290006411
  24. Diplock AT. 1997. Will the good fairies please prove to us that vitamin E lessens human degenerative disease? Free Radic Res 27: 511-532 https://doi.org/10.3109/10715769709065791
  25. Hartig W, Brauer K, Bruckner G. 1992. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 3: 869-872 https://doi.org/10.1097/00001756-199210000-00012
  26. Torres BV, McCrumb DK, Smith DF. 1988. Glycolipid-lectin interactions: reactivity of lectins from Helix pomatia, Wisteria floribunda, and Dolichos biflorus with glycolipidscontaining N-acetyl galactosamine. Arch Biochem Biophysr 262: 1-11 https://doi.org/10.1016/0003-9861(88)90161-0
  27. Hirashiki I, Ogata F, Yoshida N, Makisumi S, Ito A. 1990. Purification and complex formation analysis of a cysteine proteinase inhibitor (cystatin) from seeds of Wisteria floribunda. J Biochem 108: 604-608 https://doi.org/10.1093/oxfordjournals.jbchem.a123250
  28. Croft KD. 1998. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854: 435-442 https://doi.org/10.1111/j.1749-6632.1998.tb09922.x
  29. Tsai CH, Stern A, Chiou JF, Chern CL, Liu TZ. 2001. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radical-scavenging ability of aqueous extracts of food constituents. J Agric Food Chem 49: 3137-3141 https://doi.org/10.1021/jf001071k
  30. Labieniec M, Gabryelak T. 2005. Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols. Toxicol Lett 155: 15-25 https://doi.org/10.1016/j.toxlet.2004.06.008

Cited by

  1. Biological Activities of Extracts from Flowers of Angelica gigas Nakai vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1079
  2. Dyeability of Protein Fiber Treated with Wisteria floribunda Leaf Extract vol.26, pp.3, 2014, https://doi.org/10.5764/TCF.2014.26.3.254
  3. Consideration of preservation methods for plant genetic resources in natural monument - Focusing on preparation for becoming effective of Nagoya Protocol - vol.41, pp.3, 2014, https://doi.org/10.7744/cnujas.2014.41.3.193
  4. Effects of Hibiscus syriacus Extracts on Antioxidant Activities and Blood Circulation Improvement vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1415
  5. Antioxidative and Antigenotoxic Activity of Extracts from Cosmos (Cosmos bipinnatus) Flowers vol.63, pp.4, 2008, https://doi.org/10.1007/s11130-008-0086-8
  6. Variation of Pinitol Content for Domestic Legume Species in Korea vol.56, pp.1, 2011, https://doi.org/10.7740/kjcs.2011.56.1.050
  7. Evaluation of Antimicrobial, Antithrombin, and Antioxidant Activity of Fritillaria thunbergii Miquel vol.19, pp.9, 2009, https://doi.org/10.5352/JLS.2009.19.9.1245
  8. Antioxidative Activities of the Codonopsis lanceolata Extract in vitro and in vivo vol.39, pp.2, 2010, https://doi.org/10.3746/jkfn.2010.39.2.193
  9. Antioxidant Activities of Solvent Extracts from Rosa multiflora vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1217
  10. Antioxidant and tyrosinase inhibitory activities of methanol extracts from Magnolia denudata and Magnolia denudata var. purpurascens flowers vol.47, pp.2, 2012, https://doi.org/10.1016/j.foodres.2011.05.032
  11. Antioxidant Activity and DNA Damage Protective Effect of a Robinia pseudoacacia L. Flower Extract vol.27, pp.4, 2011, https://doi.org/10.9724/kfcs.2011.27.4.099
  12. Antioxidant and Cytotoxic Constituents from Wisteria sinensis vol.16, pp.5, 2011, https://doi.org/10.3390/molecules16054020
  13. leaves vol.32, pp.20, 2018, https://doi.org/10.1080/14786419.2017.1416375
  14. 부산 범어사 등나무군락지의 등나무 분포 특성 및 관리방안 vol.35, pp.2, 2017, https://doi.org/10.14700/kitla.2017.35.2.77
  15. The edible flowers from woody ornamental plants vol.1331, pp.None, 2008, https://doi.org/10.17660/actahortic.2021.1331.27