DOI QR코드

DOI QR Code

Double-pass Second Harmonics Generation of Tunable CW Infrared Laser Beam of DOFA System in Periodically Poled LiNbO3

PPLN 비선형 결정과 이중통과법을 이용한 DOFA 시스템에서 증폭된 연속발진형 파장가변 적외선 레이저광의 제 2고조파 발생

  • Yoo, Kil-Sang (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Jo, Jae-Heung (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Ko, Kwang-Hoon (Quantum Optics Division, Korea Atomic Energy Research Institute) ;
  • Lim, Gwon (Quantum Optics Division, Korea Atomic Energy Research Institute) ;
  • Jeong, Do-Young (Quantum Optics Division, Korea Atomic Energy Research Institute)
  • 유길상 (한남대학교 이과대학 광.전자물리학과) ;
  • 조재흥 (한남대학교 이과대학 광.전자물리학과) ;
  • 고광훈 (한국원자력연구원 양자광학연구부) ;
  • 임권 (한국원자력연구원 양자광학연구부) ;
  • 정도영 (한국원자력연구원 양자광학연구부)
  • Published : 2008.06.30

Abstract

The optimum conditions of second harmonic generation (SHG) can be successfully achieved experimentally using single pass and double pass methods of a pumping beam. The beam has a power of several Watts radiated by a DOFA (Diode Laser Oscillator & Fiber Amplifier) system, which is a high power CW wavelength tunable infrared laser system, in a PPLN (Periodically Poled MgO doped Lithium Niobate) nonlinear crystal. In the case of a single pass method, the parameters are the wavelength of 535 nm for SHG and the output power of 245 mW generated from the pumping input beam with wavelength of 1070 nm and the power of 2.45 W at phase matching temperature of $108.9^{\circ}C$. The conversion efficiency of SHG was 10%. In order to enhance the output of SHG, the double pass method of the SHG system of a PPLN using a concave mirror for the retroreflection and a pair of wedged flat windows for phase compensation was also presented. In this double pass system, we obtained the SHG output beam with the wavelength of 535 nm and the maximum power of 383 mW at optimum phase matching temperature of $108.5^{\circ}C$ by using an incident pumping beam with wavelength of 1070 nm and the power of 2.45 W. The maximum conversion efficiency is 15.6%, which is more than that of the single pass method.

주기적으로 분극 반전된 비선형 결정 중에 하나인 PPLN(Periodically Poled MgO(5%) doped Lithium Niobate)과 수 W급의 고출력 연속발진형 파장가변 적외선 레이저 시스템인 DOFA(Diode Laser Oscillator & Fiber Amplifier) 시스템을 이용하여, 이 결정에서 펌핑광을 한번 통과시키는 단일통과와 두 번 통과시키는 이중통과에서의 효율적인 제2고조파 발생 조건을 실험적으로 구하였다. 단일통과에서는 최적의 위상정합온도 $108.9^{\circ}C$에서 최대 출력 2.45 W의 적외선(파장 = 1070 nm) 펌핑광을 사용하여 최대 245 mW의 녹색광원(파장 = 535 nm)인 제 2고조파를 만들었고, 이때의 주파수 변환 효율은 10%였다. 또한 제 2고조파 발생의 효율을 증가시키기 위해서 되 반사용 오목거울과 위상보정을 위한 쐐기유리판을 이용하여 이중통과의 제2고조파 발생장치를 구성하였다. 이때 최적의 위상정합온도 $108.5^{\circ}C$에서 최대 출력 2.45 W의 적외선(파장 = 1070 nm) 펌핑광을 사용하여 최대 383 mW의 녹색광원(파장 = 535 nm)인 제 2고조파를 만들었다. 이때의 변환 효율은 15.6%로써 단일통과에서의 제 2고조파 발생 효율보다 크게 증가함을 확인하였다.

Keywords

References

  1. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun., vol. 174, pp. 231-234, 2000 https://doi.org/10.1016/S0030-4018(99)00705-1
  2. H. Furuya, A. Morikawa, Kiminori Mizuuchi, and Kazuhisa Yamamoto, “High- Beam-Quality Continuous Wave 3 W Green-Light Generation in Bulk Periodically Poled MgO: $LiNbO_3$,” Jpn. J. Appl. Phys., vol. 45, no. 8B, pp. 6704-6707, 2006 https://doi.org/10.1143/JJAP.45.6704
  3. T. Riesbeck and H. J. Eichler, “A high power laser system at 540 nm with beam coupling by second harmonic generation,” Opt. Commun., vol. 275, pp. 429-432, 2007 https://doi.org/10.1016/j.optcom.2007.03.076
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electronics., vol. 28, no. 11, pp. 2631-2654, 1992 https://doi.org/10.1109/3.161322
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett., vol. 22, no. 24, pp. 1834-1836, 1997 https://doi.org/10.1364/OL.22.001834
  6. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled $LiNbO_3$,” Opt. Lett., vol. 23, no. 3, pp. 171-173, 1998 https://doi.org/10.1364/OL.23.000171
  7. N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuouswave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:$LiNbO_3$ crystal,” Opt. Lett., vol. 29, no. 8, pp. 830-832, 2004 https://doi.org/10.1364/OL.29.000830
  8. N. E. Yu, S. Kurimura, and K. Kitamura, “Higher-Order Quasi-Phase Matched Second Harmonic Generation in Periodically Poled MgO-Doped Stoichiometric $LiTaO_3$,” J. Korean Phys. Soc., vol. 47, no. 4, pp. 636-639, 2005
  9. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuouswave 2 W green light generation in periodically poled Mgdoped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys., vol. 45, no. 34, pp. L907-909, 2006 https://doi.org/10.1143/JJAP.45.L907
  10. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett., vol. 90, no. 051115, pp. 1-3, 2007
  11. Z. M. Liao, S. A. Payne, J. Dawson, A. Drobshoff, C. Ebbers, D. Pennington, and L. Taylor, “Thermally induced dephasing in periodically poled KTP frequency-doubling crystals,” J. Opt. Soc. Am. B., vol. 21, no. 12, pp. 2191-2195, 2004 https://doi.org/10.1364/JOSAB.21.002191
  12. S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I Freitag, “Optimizing non-resonant frequency convertsion in periodically poled media,” Appl. Phys. B., vol. 79, pp. 211-219, 2004 https://doi.org/10.1007/s00340-004-1524-4
  13. I. Juwiler, A. Arie, A. Skliar, and G. Rosenman, “Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing wave external cavity,” Opt. Lett., vol. 24, no. 17, pp. 1236-1238, 1999 https://doi.org/10.1364/OL.24.001236
  14. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a Wedged crystal,” Opt. Lett., vol. 23, no. 3, pp. 165-167, 1998 https://doi.org/10.1364/OL.23.000165
  15. I. Juwiler and A. Arie, “Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity,” Appl. Opt., vol. 42, no. 36, pp. 7163-7169, 2003 https://doi.org/10.1364/AO.42.007163
  16. L. Goldberg, J. P. Koplow, R. P. Moeller, and D. A. V. Kliner, “High-power superfluorescent source with a sidepumped Yb-doped double-cladding fiber,” Opt. Lett., vol. 23, no. 13, pp. 1037-1039, 1998 https://doi.org/10.1364/OL.23.001037
  17. L. Goldberg, J. P. koplow, and D. A. V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broadstripe laser diode,” Opt. Lett., vol. 24, no. 10, pp. 673-675, 1999 https://doi.org/10.1364/OL.24.000673
  18. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, (Springer, New York, USA, 2005), pp. 35-48
  19. HC Photonics Co. web. site : “http://www.hcphotonics.com”
  20. E. O. Ammann and S. Guch, “1.06-0.53 $\mu$m second harmonic generation using congruent lithium niobate,” Appl. Phys. Lett., vol. 52, no. 17, pp. 1374-1376, 1988 https://doi.org/10.1063/1.99688
  21. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration”, IEEE J. Quant. Electron., vol. 26, no. 1, pp. 135-138, 1990 https://doi.org/10.1109/3.44926
  22. Z. M. Liao, S. A. Payne, J. Dawson, A. Drobshoff, C. Ebbers, D. Pennington, and L. Taylor, “Thermally induced dephasing in periodically poled KTP frequency-doubling crystals,” J. Opt. Soc. Am. B., vol. 21, no. 12, pp. 2191-2195, 2004 https://doi.org/10.1364/JOSAB.21.002191
  23. N. E. Yu, C. S. Jung, D. K. Ko, and J. M. Lee, “Thermal Dephasing of Quasi-Phase-Matched Second-Harmonic Generation in Periodically Poled Stoichiometric $LiTaO_3$ at High Input Power,” J. Korean. Phys. Soc., vol. 49, no. 2, pp. 528-532, 2006