월악산 용하계곡 굴참나무림의 유기탄소 분포 및 수지

Organic Carbon Distribution and Budget in the Quercus variabilis Forest in the Youngha valley of Worak National Park

  • 남궁정 (공주대학교 자연과학대학 생명과학과) ;
  • 최현진 (공주대학교 자연과학대학 생명과학과) ;
  • 한아름 (공주대학교 자연과학대학 생명과학과) ;
  • 문형태 (공주대학교 자연과학대학 생명과학과)
  • 발행 : 2008.08.31

초록

월악산 용하계곡에 발달되어 있는 굴참나무림에서 2005년부터 2006년까지 지상부와 지하부 생물량, 낙엽층 그리고 토양의 유기탄소의 분포를 조사하였으며, 탄소수지를 파악하기 위해 토양 호흡량을 측정하였다. 지상부와 지하부 생물량에 분포된 탄소량은 각각 56.22, 13.90 ton C ha$^{-1}$이 었으며, 낙엽층과 토양의 유기탄소량은 각각 4.7 ton C ha$^{-1}$, 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$로, 조사지 굴참나무림의 전체 유기탄소량은 193.96 ton C ha$^{-1}$이었으며, 이중 61.43%의 유기탄소가 토양에 분포하는 것으로 조사되었다. 본 굴참나무림에서 연간 지상부와 지하부 생물량에 의한 유기탄소의 순 증가량은 7.68 ton C ha$^{-1}$ yr$^{-1}$이었으며, 토양호흡을 통해 6.21 ton C ha$^{-1}$ yr$^{-1}$의 유기탄소가 방출되어 본 굴참나무림에서는 연간 대기로부터 1.47 ton C ha$^{-1}$ yr$^{-1}$가 순흡수되는 것으로 조사되었다.

Organic carbon distribution and carbon budget of a Quercus variabilis forest in the Youngha valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from 2005 through 2006. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above- and below-ground biomass was 56.22 and 13.90 ton C ha$^{-1}$. Amount of organic carbon in annual litterfall was 2.33 ton C ha$^{-1}$ yr$^{-1}$. Amount of soil organic carbon within 50 cm soil depth was 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$. Total amount of organic carbon in this Q. variabilis forest was 193.96 ton C ha$^{-1}$. Of these, 61.43% of organic carbon was allocated in the soil. Net increase of organic carbon in above- and below-ground biomass in this Q. variabilis forest was estimated to 7.68 ton C ha$^{-1}$ yr$^{-1}$. The amount of carbon evolved through soil respiration was 6.21 ton C ha$^{-1}$ yr$^{-1}$. Net amount of 1.47 ton C ha$^{-1}$ yr$^{-1}$ was absorbed from the atmosphere by this Q. variabilis forest.

키워드

참고문헌

  1. 박관수. 1999. 충주지역의 신갈나무와 굴참나무 천연림 생태계의 지상부 및 토양 중 탄소고정에 관한 연구. 한국임학회지. 88:93-100
  2. 박봉규, 이인숙. 1981. 남한의 삼림생태계에 있어서의 낙엽의 분해 모델. 한국생태학회지. 4:38-51
  3. 이규진, 문형태. 2005. 상수리나무림의 유기탄소 분포에 관한 연구. 한국생태학회지. 28:265-270
  4. 이윤영, 문형태. 2001. 상수리나무림의 토양호흡에 관한 연구. 한국생태학회지. 24:141-147
  5. 장남기, 김인자. 1983. 지리산 피아골의 졸참나무와 서나무 군락의 물질생산과 분해에 관한 연구. 한국생태학회지. 6:198-207
  6. 정진현, 김춘식, 이원규. 1998. 지역별, 임분별 산림토양내 탄소량 추정. 산림과학논문집. 57:178-183
  7. 최영철, 박인협. 1993. 전남 모후산지역 굴참나무 천연림과 현사시나무인공림의 물질생산에 관한 연구. 한국임학회지. 82:188-194
  8. 한동렬. 2002. 속리산 신갈나무(Quercus mongolica)림의 낙엽분해용과 $CO_{2}$ 수지 분석에 의한 탄소순환 모델링. 충북대학교 박사학위논문. 207pp
  9. Arnold RW. 1995. Role of soil survey in obtaining a global carbon budget. In soils and global change. eds. R Lal, J kimble, E Levine, BA Stewart. pp. 257-263
  10. Armson KA. 1977. Forest Soil: Properties and Processus. Toronto, Ont. (Canada). Univ. of Toronto Press. 390pp
  11. Billings SA, EE Richter and J Yarie. 1998. Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can. J. For. Res. 28:1773-1783 https://doi.org/10.1139/cjfr-28-12-1773
  12. Black CA. 1965. Mothods of soil analysis, part 2. American society of agronomy, Inc., Madison, Wisconsin. pp. 1562-1565
  13. Bpu;amd M. 2006. The economics of using forests to increase carbon storage. Can. J. For. Res. 36:2223-2234 https://doi.org/10.1139/X06-094
  14. Choi HJ, IY Jeon, CH Shin and HT Mun. 2006. Soil properties of Quercus variabilis forest on Youngha valley in Mt. Worak National Park. J. Ecol. Field Biol. 29:439-443 https://doi.org/10.5141/JEFB.2006.29.5.439
  15. Davidson ED, E Belk and RD Boone. 1998. Soil watercontent and temperature as independent or confounded factors controlling soil respiration in temperature mixed hardwood forest. Blobal Change Biol. 4:212-217
  16. Dixon RK, S Brown, RA Houghton, RM Solomon, MC Trexler and L Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185-190 https://doi.org/10.1126/science.263.5144.185
  17. Eswaran HE, Van den Berg, P Reich and J Kimble. 1995. Global soil carbon resources. In soils and global change. eds. R LAL, J Kimble, E Levine and BA Stewart. 27-44
  18. Grace J. 2005. Role of forest biomass in the global carbon balance. pp. 19-45. In: The carbon balance of forest biomes. H Griffiths and PG Jarvis. (eds). Taylor and Francis. USA. 355pp
  19. Houghton RA, JE Hobbie, JM Melillo, B Moore, BJ Reterson, GR Shaver and GM Woodwell. 1983. Changes in the carbon cycle of terrestrial biota and soils between 1860 and 1980: A new release of $CO_{2}$ to the atmosphere, Ecol. Monogr. 5.:235-262
  20. Houghton RA and GM Woodwell. 1989. Global climate change. Scientific American 260:36-44
  21. Jeon, IY, CH Shin, GH Kim and HT Mun. 2007. Organic Carbon Distibution of the Pinus densiflora Forest on Songgye Valley at Mt. Worak National Park. J. Korean For. Soc. 30:17-21 https://doi.org/10.5141/JEFB.2007.30.1.017
  22. Johnson FL and PG Riser. 1974. Biomass, annual net primary production and dynamics of six mineral elements in a post oak-blackjack oak forest. Ecology 56:1246-1258
  23. Kim CS. 2006. Soil carbon cycling and soil $CO_{2}$ efflus in a red pine(pinus densiflora) atand. J. Ecol. Field Biol. 29:23-27 https://doi.org/10.5141/JEFB.2006.29.1.023
  24. Kim CS and HS Cho. 2004. Quantitative comparisons of soil carbon and nutrient storage in Larix leptoleis, Pinus densiflora and Pinus rigitaeda plantations. Korean J. Ecology. 27:67-71 https://doi.org/10.5141/JEFB.2004.27.2.067
  25. Koo JW, YH Son, RH Kim and J Kim. 2005. A stydy on methods of separtation soil respiration by source. Korean J. of Agricultural and Forest Meteorology. 7:28-34
  26. Law BE, PE Thornton, J Irvine, PM Anthoni and S Vantuyl. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biolgoy. 7:755-777 https://doi.org/10.1046/j.1354-1013.2001.00439.x
  27. McKenny GW, D Yemshanov, G Fox and E Ramlal. 2004. Cost estimate for carbon sequestratuib from fast growing popular plantation in Canada. For. Policy Econ. 6:345-358 https://doi.org/10.1016/j.forpol.2004.03.010
  28. Richards KR and C Stokers. 2004. A review of forest carbon sequestration cost studies: a dozen years of research. Climate Change 63:1-48 https://doi.org/10.1023/B:CLIM.0000018503.10080.89
  29. Sharma E and RS Ambasht. 1987. Litterfall, decomposition and nutrient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. J. Ecol. 75:997-1010 https://doi.org/10.2307/2260309
  30. Sohngen B and R mendelsohn. 2003. An optimal control model of forest carbon sequestration. American J. of Agricultural Economics 85:448-457 https://doi.org/10.1111/1467-8276.00133
  31. Son YH, G Lee and JY Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantation. Korean Journal of Soil Science and Fertilizer 27:290-295
  32. Son YH, IH Park, HO Jin, MJ Yi, DY Kim, RH Kim and JO Hwang. 2004. Biomass and nutrient cycling of natural oak forest in Korea. Ecological Issues in a Changing World Status, Responses and Strategy-, S.K. Hong et al.(Eds), Kluwer Academic Publishers. pp. 217-232
  33. Watson RT and IR Noble. 2005. The global imperative and policy for carbon sequestration. pp. 1-17, In: The carbon balance of foroest biomes. H Griffiths and PG Jarvis. (eds). Taylor and Francis. USA. 355pp
  34. Witkamp M. 1969. Cycle of temperature and carbon dioxide evolution from the forest floor. Ecology 50:922-924 https://doi.org/10.2307/1933713