The Crystallization of Polycarbonate Film Using Methylene Chloride/1,3-Dioxolane as a Solution Casting Co-Solvent

Methylene Chloride/1,3-Dioxolane 혼합 용매에 의한 용액 가공 폴리카보네이트 필름의 결정화

  • Published : 2008.09.30

Abstract

The effect of methylene chloride/1,3-dioxolane co-solvent on the crystallization in the optical polycarbonate film was investigated. Increasing 1,3-dioxolane content in co-solvent resulted in the crystallization due to the lowering of solvent evaporation rate during film drying process. The crystallization in PC film could be minimized by either controlling of solvent composition and increasing solvent drying temperature. It was found that the surface roughness of solution casting PC film was affected by both crystallization and solvent evaporation rate. This morphological effect by alternative solvent is ascribed to a large decrease in light transmissivity on the optical PC film.

광학용 폴리카보네이트 필름 제조에 사용되는 methylene chloride/1,3-dioxolane 혼합 용매가 폴리카보네이트 결정화에 미치는 영향에 대하여 살펴보았다. Methylene chloride에 환경 친화성 용매인 1,3-dioxolane을 혼합한 co-solvent를 용액 캐스팅 PC 필름 가공의 용매로 사용하는 경우, 혼합된 1,3-dioxolane에 의하여 필름 건조 시 용매 제거 속도가 느려져 PC필름의 결정화를 유발시킴을 알 수 있었다. 이러한 결정화 현상은 용매 조성비 및 용매 건조 온도를 조절하여 용매 제거 속도를 증가시킴으로 최소화할 수 있음을 확인하였다. PC의 결정화는 PC 필름의 표면 거칠기를 증가시키고 이는 필름의 광학 특성을 감소시키는 요인으로 작용함을 알 수 있었다.

Keywords

References

  1. J. Dybal, P. Schmidt, J. Baldrian, and J. Katochvil, Macromolecules, 31, 6611 (1998) https://doi.org/10.1021/ma9807623
  2. C. C. Su, E. M. Woo, C. Y. Chen, and R. R. Woo, Polymer, 38, 9 (1997) https://doi.org/10.1016/S0032-3861(96)00471-5
  3. M. Tomaselli, M. M. Zehnder, P. Robyr, C. Grob Pisano, R. R. Ernst, and U. W. Suter, Macromolecules, 30, 3679 (1997)
  4. J. P. Mercier, G. Groeninckx, and M. Lense, J. Polym. Sci., 26, 2975 (1981)
  5. H. L. Heiss, Polym. Eng. Sci., 19, 625 (1979) https://doi.org/10.1002/pen.760190906
  6. W. R. Moore and M. Uddin, Eur. Polym. J., 5, 185 (1969) https://doi.org/10.1016/0014-3057(69)90116-5
  7. I. I. Sapragonas, M. K. Liutkevichius, and A. I. Machiulis, Mech. Compos. Mater., 29, 284 (1993) https://doi.org/10.1007/BF00612657
  8. T. Alfrey, E. F. Gurnee, and W. G. Lloyd, J. Polym. Sci. C: Polym. Lett., 12, 249 (1966)
  9. H. L. Frisch, Polym. Eng. Sci., 20, 1 (1980) https://doi.org/10.1002/pen.760200102
  10. L. Mandelkern and F. Long, J. Polym. Sci., 6, 457 (1951) https://doi.org/10.1002/pol.1951.120060406
  11. G. S. Park, J. Polym. Sci., 11, 97 (1953) https://doi.org/10.1002/pol.1953.120110201
  12. R. A. Ware, S. Tirtowidjojo, and C. Cohen, J. Appl. Polym. Sci., 25, 717 (1980) https://doi.org/10.1002/app.1980.070250501
  13. S. B. Lin and J. L. Koenig, J. Appl. Polym. Sci. Part B; Polym. Phys., 21, 1539 (1983) https://doi.org/10.1002/pol.1983.180210820
  14. A. B. Desai and G. L. Wikes, J. Polym. Sci. Symp., 46, 291 (1974)
  15. Y. Fujiwara and S. H. Zeronian, J. Appl. Polym. Sci., 23, 3601 (1979) https://doi.org/10.1002/app.1979.070231216
  16. R. A. Ware, S. Tirtowidjo, and C. Cofen, J. Appl. Polym. Sci., 26, 2975 (1981) https://doi.org/10.1002/app.1981.070260914
  17. K. J. Shon and H. J. Kang, Polymer(Korea), 18, 231 (1994)