Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation

전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석

  • Jeon, Hyeon-Ae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Oh, Hwan-Hee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young-Jin (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Ko, Jae-Eok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chung, Ho-Yun (Department of Plastic and Reconstructive Surgery, Kyungpook National University Hospital) ;
  • Kang, Inn-Kyu (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Kim, Won-Il (Research and Development Center, WONBIOGEN Co.) ;
  • Kwon, Oh-Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 전현애 (금오공과대학교 고분자공학과) ;
  • 오환희 (금오공과대학교 고분자공학과) ;
  • 김영진 (금오공과대학교 고분자공학과) ;
  • 고재억 (금오공과대학교 고분자공학과) ;
  • 정호윤 (경북대학교병원 정형외과학교실) ;
  • 강인규 (경북대학교 고분자공학과) ;
  • 김원일 ((주)원바이오젠) ;
  • 권오형 (금오공과대학교 고분자공학과)
  • Published : 2008.07.31

Abstract

We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

전기방사법에 의해 미생물 유래의 나노섬유 부직포를 제조하였고, 전자선조사에 의해 나노섬유상에 poly(N-isopropylacrylamide)(PIPAAm)을 그래프트함으로써 온도응답성 나노섬유표면을 제조하였다. 얻어진 나노섬유는 랜덤하게 배열되었으며 평균직경이 400 nm이었다. ATR-FTIR 및 ESCA 분석에 의해서 PIPAAm이 나노섬유 표면에 성공적으로 그래프트되었음을 확인하였다. PIPAAm을 그래프트 하지 않은 표면에서는 물접촉각의 변화가 없었으나, PIPAAm이 그래프트된 나노섬유 표면에서는 온도가 $37^{\circ}C$에서 $20^{\circ}C$로 바뀜에 따라 물접촉각이 감소하였다. 이러한 결과는 PIPAAm이 그래프트된 표면에서 높은 온도에서는 소수성의 특성을 가지다가, 낮은 온도에서는 PIPAAm 사슬이 수화되면서 친수성으로 바뀌었기 때문이다. 제조한 온도응답성 나노섬유는 조직적합성이 우수하였으며, 저온처리에 의해 배양세포가 원활히 탈착 회수됨을 알 수 있었다.

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer, Biotechnol. Bioeng., 38, 145 (1991) https://doi.org/10.1002/bit.260380207
  3. A. Atala, D. Mooney, J. P. Vacanti, and R. Langer, Synthetic Biodegradable Polymer Scaffolds, Birkhauser, Boston, 1997
  4. J. R. Morgan and M. L. Yarmush, Tissue Engineering Methods and Protocols, Humana Press, 1999
  5. A. Nieponice, L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp, Biomaterials, 29, 825 (2008) https://doi.org/10.1016/j.biomaterials.2007.10.044
  6. L. Cui, B. Liu, G. Liu, W. Zhang, L. Cen, J. Sun, S. Yin, W. Liu, and Y. Cao, Biomaterials, 28, 5477 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.042
  7. G. Marletta, G. Ciapetti, C. Satriano, F. Perut, M. Salerno, and N. Baldini, Biomaterials, 28, 1132 (2007) https://doi.org/10.1016/j.biomaterials.2006.10.027
  8. J. C. Mohr, J. J. de Pablo, and S. P. Palecek, Biomaterials, 26, 6032 (2006)
  9. S. Sethe, A. Scutt, and A. Stolzing, Ageing Res. Rev., 5, 91 (2006) https://doi.org/10.1016/j.arr.2005.10.001
  10. S. Bae, C. W. Park, H. K. Son, C.-J, Jeon, and H. Kim, Tissue Engineering and Regenerative Medicine, 4, 388 (2007)
  11. M. Yamato, M. Utsumi, A. Kushida, and T. Okano, Tissue Engineering, 7, 473 (2001) https://doi.org/10.1089/10763270152436517
  12. O. H. Kwon, A. Kikuchi, M. Yamato, Y. Sakurai, and T. Okano, J. Biomed. Mater. Res., 50, 82 (2000) https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7
  13. G. Chen, Y. Imanishi, and Y. Ito, J. Biomed. Mater. Res., 42, 38 (1998) https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<38::AID-JBM6>3.0.CO;2-P
  14. O. H. Kwon, A. Kikuchi, M. Yamato, and T. Okano, Biomaterials, 24, 1223 (2003) https://doi.org/10.1016/S0142-9612(02)00469-6
  15. M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res., 55, 137 (2001) https://doi.org/10.1002/1097-4636(200104)55:1<137::AID-JBM180>3.0.CO;2-L
  16. M. Hirose, O. H. Kwon, M. Yamato, A. Kikuchi, and T. Okano, Biomacromolecules, 1, 377 (2000) https://doi.org/10.1021/bm0002961
  17. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001) https://doi.org/10.1016/S0032-3861(01)00540-7
  18. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramacrishna, Biomaterals, 25, 1883 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.042
  19. E. D. Boland, J. Miomed. Mater. Res., 71B, 144 (2004) https://doi.org/10.1002/jbm.b.30105
  20. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  21. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  22. I. S. Lee, O. H. Kwon, W. Meng, I.-K. Kang, and Y. Ito, Macromol. Res., 12, 374 (2004) https://doi.org/10.1007/BF03218414