Statistical Methods for Tomographic Image Reconstruction in Nuclear Medicine

핵의학 단층영상 재구성을 위한 통계학적 방법

  • Lee, Soo-Jin (Department of Electronic Engineering, Paichai University)
  • Published : 2008.04.30

Abstract

Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.

Keywords

References

  1. Cherry S, Sorenson J, Phelps M. Physics in Nuclear Medicine (3rd ed.). Saunders 2003
  2. Bushberg J, Leidholdt E Jr., Boone J. The Essential Physics of Medical Imaging (2nd ed.). Lippincott Williams & Wilkins 2002
  3. Ollinger J, Fessler J. Positron-emission tomography.1997;43-55
  4. Kak A, Slaney M. Principles of Computerized Tom IEEE Signal Processing Magazine ographic Imaging. Philadelphia, PA SIAM 2001
  5. Macovski A. Medical Imaging, Prentice-Hall, Englewood Cliffs 1983
  6. Gordon R. A tutorial on ART (algebraic reconstruction techniques). IEEE Trans Nucl Sci 1974;21:78-93 https://doi.org/10.1109/TNS.1974.6499238
  7. Qi J, Leahy R. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 2006;51:R541-77 https://doi.org/10.1088/0031-9155/51/15/R01
  8. Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982;1;113-22 https://doi.org/10.1109/TMI.1982.4307558
  9. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomog 1984;8:306-16
  10. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6:721-41 https://doi.org/10.1109/TPAMI.1984.4767596
  11. Lee SJ, Rangarajan A, Gindi G. Bayesian image reconstruction in SPECT using higher order mechanical models as priors. IEEE Trans Med Imag 1995;14:669-80 https://doi.org/10.1109/42.476108
  12. Lee SJ, Gindi G, Zubal G, Rangarajan A. Using ground-truth data to design priors in Bayesian SPECT reconstruction. Bizais Y, Barillot C, Paola D, eds., Information Processing in Medical Imaging, Kluwer Academic Publishers 1995:27-38
  13. Zhou Z, Leahy R. Approximate maximum likelihood hyperparameter estimation for Gibbs priors. IEEE Trans Med Imag 1997;6:844-61 https://doi.org/10.1109/83.585235
  14. Lee SJ. Simultaneous reconstruction and edge detection of tomographic images using accelerated deterministic annealing. Optical Engineering 2007;46:057006:1-10
  15. Lee SJ. Performance comparison of convex-nonquadratic priors for Bayesian tomographic reconstruction. J Electronic Imaging, 2000;9: 242-50 https://doi.org/10.1117/1.482752
  16. Huber P. Robust Statistics, Wiley, New York, 1981
  17. Bouman C, Sauer K. A generalized Gaussian image model for edge preserving MAP estimation. IEEE Trans Image Processing 1993;2: 296-310 https://doi.org/10.1109/83.236536
  18. Green P. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imag 1990;9;84- 93 https://doi.org/10.1109/42.52985
  19. Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans Med Imag 1990;9:439-46 https://doi.org/10.1109/42.61759
  20. Li S. Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing. IEEE Trans Pattern Anal Mach Intell 1998;20:916-32 https://doi.org/10.1109/34.713359
  21. Hudson H, Larkin R. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994;13:601-9 https://doi.org/10.1109/42.363108
  22. Lee SJ. Spline-regularized ordered subsets expectation maximization algorithms for emission computed tomography. J Electronic Imaging 2003;12:17-24 https://doi.org/10.1117/1.1525791
  23. Fessler J. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imag, 1994;13: 290-300 https://doi.org/10.1109/42.293921
  24. Zheng J, Saquib S, Sauer K, Bouman C. Parallelizable Bayesian tomography algorithms with rapid, guaranteed convergence. IEEE Trans Image Processing 2000;9:1745-59 https://doi.org/10.1109/83.869186
  25. Browne J, De Pierro A. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography. IEEE Trans Med Imag 1996;15:687-99 https://doi.org/10.1109/42.538946
  26. De Pierro A, Yamagishi M. Fast EM-like methods for maximum a posteriori estimates in emission tomography. IEEE Trans Med Imag 2001;20:280-8 https://doi.org/10.1109/42.921477
  27. Ahn S, Fessler JA. Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans med Imag 2003;22:613-26 https://doi.org/10.1109/TMI.2003.812251
  28. Hsiao I, Rangarajan A, Khurd P, Gindi G. An accelerated convergent ordered subset algorithm for emission tomography. Phys Med Biol 2004;49:2145-56 https://doi.org/10.1088/0031-9155/49/11/002
  29. Censor Y. Finite series-expansion reconstruction methods. IEEE Proc. 1983;71:409-18 https://doi.org/10.1109/PROC.1983.12598
  30. Zhou L, Khurd P, Kulkarni S, Rangarajan A, Gindi G. Aperture optimization in emission imaging using ideal observers for joint detection and localization. Phys Med Biol 2008;20:2019-34