Physical Artifact Correction in Nuclear Medicine Imaging: Normalization and Attenuation Correction

핵의학 영상의 물리적 인공산물보정: 정규화보정 및 감쇠보정

  • Kim, Jin-Su (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Jae-Sung (Interdisciplinary programs in Radiation Applied Life Science major, Seoul National University) ;
  • Cheon, Gi-Jeong (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences)
  • 김진수 (한국원자력의학원 분자영상연구부) ;
  • 이재성 (서울대학교 방사선응용생명과학협동과정) ;
  • 천기정 (한국원자력의학원 분자영상연구부)
  • Published : 2008.04.30

Abstract

Artifact corrections including normalization and attenuation correction were important for quantitative analysis in Nuclear Medicine Imaging. Normalization is the process of ensuring that all lines of response joining detectors in coincidence have the same effective sensitivity. Failure to account for variations in LOR sensitivity leads to bias and high-frequency artifacts in the reconstructed images. Attenuation correction is the process of the correction of attenuation phenomenon lies in the natural property that photons emitted by the radiopharmaceutical will interact with tissue and other materials as they pass through the body. In this paper, we will review the several approaches for normalization and attenuation correction strategies.

Keywords

References

  1. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T. A normalization technique for 3D PET data. Phys Med Biol. 1991;36:939-52 https://doi.org/10.1088/0031-9155/36/7/003
  2. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol. 2000;45: 3253-66 https://doi.org/10.1088/0031-9155/45/11/310
  3. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44:571-94 https://doi.org/10.1088/0031-9155/44/2/020
  4. Badawi RD, Lodge MA, Marsden PK. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET. Phys Med Biol. 1998;43:189-205 https://doi.org/10.1088/0031-9155/43/1/012
  5. Oakes TR, Sossi V, Ruth TJ. Normalization for 3D PET with a low-scatter planar source and measured geometric factors. Phys Med Biol. 1998;43:961-72 https://doi.org/10.1088/0031-9155/43/4/023
  6. de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol. 2007;52:1505-26 https://doi.org/10.1088/0031-9155/52/5/019
  7. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25:774-87 https://doi.org/10.1007/s002590050282
  8. Lodge MA, Badawi RD, Marsden PK. A clinical evaluation of the quantitative accuracy of simultaneous emission/transmission scanning in whole-body positron emission tomography. Eur J Nucl Med. 1998; 25:417-23 https://doi.org/10.1007/s002590050240
  9. Meikle SR, Bailey DL, Hooper PK, et al. Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. J Nucl Med. 1995;36:1680-88
  10. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25: 2046-53 https://doi.org/10.1118/1.598392
  11. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291-315
  12. Kaneko K, Kuwabara Y, Sasaki M, et al. Validation of quantitative accuracy of the post-injection transmission-based and transmissionless attenuation correction techniques in neurological FDG-PET. Nucl Med Commun. 2004;25:1095-1102 https://doi.org/10.1097/00006231-200411000-00005
  13. van Velden FH, Kloet RW, van Berckel BN, Molthoff CF, de Jong HW, Lammertsma AA, et al. Impact of attenuation correction strategies on the quantification of High Resolution Research Tomograph PET studies. Phys Med Biol. 2008;53:99-118 https://doi.org/10.1088/0031-9155/53/1/007
  14. Weinzapfel BT, Hutchins GD. Automated PET attenuation correction model for functional brain imaging. J Nucl Med. 2001;42:483-91
  15. Montandon ML, Zaidi H. Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage. 2005;25:278- 286 https://doi.org/10.1016/j.neuroimage.2004.11.021
  16. Montandon ML, Zaidi H. Quantitative analysis of template-based attenuation compensation in 3D brain PET. Comput Med Imaging Graph. 2007;31:28-38 https://doi.org/10.1016/j.compmedimag.2006.09.017
  17. Stodilka RZ, Kemp BJ, Prato FS, Kertesz A, Kuhl D, Nicholson RL. Scatter and attenuation correction for brain SPECT using attenuation distributions inferred from a head atlas. J Nucl Med. 2000;41: 1569-78
  18. Kamel E, Hany TF, Burger C, Treyer V, Lonn AH, von Schulthess GK, et al. CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging. 2002;29:346-50 https://doi.org/10.1007/s00259-001-0698-9
  19. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43:1137-43
  20. Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol. 2003;13:724-28 https://doi.org/10.1007/s00330-002-1564-2
  21. Nehmeh SA, Erdi YE, Kalaigian H, Kolbert KS, Pan T, Yeung H, et al. Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. J Nucl Med. 2003;44: 1940-4
  22. Visvikis D, Costa DC, Croasdale I, Lonn AH, Bomanji J, Gacinovic S, et al. CT-based attenuation correction in the calculation of semiquantitative indices of 18F-FDG uptake in PET. Eur J Nucl Med Mol Imaging. 2003;30:344-53 https://doi.org/10.1007/s00259-002-1070-4
  23. Koepfli P, Hany TF, Wyss CA, Namdar M, Burger C, Konstantinidis AV, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 2004;45: 537-42
  24. Carney JP, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33:976-83 https://doi.org/10.1118/1.2174132
  25. Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imagingguided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys. 2003;30:937-48 https://doi.org/10.1118/1.1569270
  26. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol. 1995;40:929-44 https://doi.org/10.1088/0031-9155/40/5/014
  27. Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging. 2008. (In press)
  28. Zaidi H. Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology. 2007;244:639-42 https://doi.org/10.1148/radiol.2443070092
  29. Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, et al. Performance measurement of the microPET focus 120 scanner. J Nucl Med. 2007;48:1527-35 https://doi.org/10.2967/jnumed.107.040550
  30. Hooper PK, Meikle SR, Eberl S, Fulham MJ. Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies. J Nucl Med. 1996;37:128-36
  31. van der Weerdt AP, Boellaard R, Knaapen P, Visser CA, Lammertsma AA, Visser FC. Postinjection transmission scanning in myocardial 18F-FDG PET studies using both filtered backprojection and iterative reconstruction. J Nucl Med. 2004;45:169-75
  32. Chow PL, Rannou FR, Chatziioannou AF. Attenuation correction for small animal PET tomographs. Phys Med Biol. 2005;50:1837-50 https://doi.org/10.1088/0031-9155/50/8/014
  33. Lehnert W, Meikle SR, Siegel S, Newport D, Banati RB, Rosenfeld AB. Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner. Phys Med Biol. 2006;51:4003-16 https://doi.org/10.1088/0031-9155/51/16/008